
2 0 1 U K

London
Journals Press

LJP

ABSTRACT

LJP Copyright ID: 661852
ISBN 10: 153763156
ISBN 13: 978-1537631561

London Journal of Engineering Research

Volume 18 | Issue 1 | Compilation 1.0

Scan to know paper details and
author's profile

Reengineering of Aerodynamic Flow-Field Module

In this paper, we reengineer the flow field computation module. This module generates a structured and an

automatic mesh and in the next step it solves the potential equation of the flow field. The key concepts is to

recall the use of the finite element method in solving Laplacian problem. We will show the feasibility of the

full potential equation in the simulations of bi-dimensional steady compressible flows. Formally, we

suggest an easiest version in order to generalize it in the future. This work is summarized by converting the

old version which is writing in Fortran 77 to another programming language Fortran 90.

Keywords:​ ​ potential field, finite elements, software tool, Spaghetti code, mathematical model.

Classification:​ ​For Code: 090101

Language: ​English

Tarik Chakkour

© 2018. Tarik Chakkour. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial
4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction
in any medium, provided the original work is properly cited.

Reengineering of Aerodynamic Flow-Field
Module
Tarik Chakkour

__

I. ABSTRACT

In this paper, we reengineer the flow field

computation module. This module generates a

structured and an automatic mesh and in the

next step it solves the potential equation of the

flow field. The key concepts is to recall the use of

the finite element method in solving Laplacian

problem. We will show the feasibility of the full

potential equation in the simulations of

bi-dimensional steady compressible flows.

Formally, we suggest an easiest version in order

to generalize it in the future. This work is

summarized by converting the old version which

is writing in Fortran 77 to another programming

language Fortran 90.

Keywords: ​potential field, finite elements,

software tool, Spaghetti code, mathematical

model.

Author: Univ. Bretagne-Sud, UMR 6205, LMBA,

F-56000 Vannes, France.

II. INTRODUCTION

Icing is due to the impact of supercooled water

droplets on the wall of the aircraft. The

supercooling of water is almost stable

equilibrium. This water remains liquid when its

temperature is negative. The drops that impact

solidify instantly almost because of their unstable

state. Frost is specific form associated to the ice

which has a major disadvantage while phase of

aircraft flight. Frost changes the profile plane

(wings, rudders . . .) and degrades the

aerodynamic performance. The ice can block the

rudders, measuring instruments, reduce the

visibility through the windshield and it can also

enter the engine. The paper [14] deals with the ice

accretion on aircraft wings and with stabilizers

that can cause some aerodynamic performance

degradation. Weight increase, control and

maneuver abilities difficulties that may reduce the

aircraft operational safety margin.

The development of bi-dimensional numerical

code which uses a predictor and corrector

formulations is presented. At first the icing form

has been predicted. After a first loop, we obtain a

form of predictor of ice shape. To take into

account the influence ice on the aerodynamic flow

field, a new mesh is created assuming that the ice

is normal to the surface of the body. A new

iteration is then performed. The goal of

reengineering this code (called module in the rest

of the paper) is to reduce the overall time and

memory required to compute physical variables

(density, pressure, temperature) on the profile

covered by the estimated shape.

Compressible fluid flow simulations needed for

aerodynamic applications can be modeled with

different degree of sophistication. The simplest

model is the full potential equation which

assumes inviscid, irrotational and isentropic

flows. Numerical techniques for the solution of

the full potential equation equation was developed

respectively in the 1970s and in the 1980s [2, 11, 7,

9, 12]. Indeed, compressible flow around entire

aircrafts have been simulated. For example, the

full potential equation has been solved with wing,

body, struts, and nacelles [15]. The main

considerations addressed in this paper are the full

potential. We use a fully structured finite element

discretization for the full potential equation and

the interface condition. 2D transonic flow

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

23© 2018 London Journals Press

simulations around airfoil are investigated. This

paper first presents a short description of the

module which computes the flow field around

profile and generates aerodynamic results. It

solves the potential equation of the flow field.

It is easy to produce poor quality software in

Fortran 77 than in any other language.

Consequently, there is a need for software tools to

aid the development of scientific and engineering

applications in Fortran 90. Fortran 90 offers

many significant advantages compared to

previous standard Fortran 77. It brings dynamic

memory management, abstract data types, data

hiding, array notation and explicit subprogram

interfaces. When we will use correctly these new

features in the module, it allows us a better

quality software and a perform application. In this

paper, we investigate the software quality tools,

covering Fortran 90 in order to re-engineer the

module.

Since 1980, several numerical models for icing

simulation were developed in the field of

aeronautics. Several software packages have been

designed by different groups of researchers

around the world to simulate the accretion regime

in local wet and dry on a wing in two dimensions

(see table 1). The main objective of this paper is to

take aerodynamic flow-field, explain this

mathematical module, and propose a clear and

easy version to be maintained in Fortran 90. The

interest is to reduce the computational cost, to

reduce the memory requirement and to improve

the accuracy of the solution.

Table 1: ​The numerical code developed by differents laboratories.

Name of code Laboratory/country year Person developing code

Sic Onera/France 1990 Gent

Trajice 2D Englend 1992 Guffond

Canice Canada 1994 Paraschivoiu

Lewice 2D USA 1995 Wright

Cira Italy 1996 Migione

The organization of the rest of this paper is as

follows. Section 2 describes the conservation of

the potential field used the divergence equation

which is discretized by the numerical method of

finite element. The using of the numerical method

for solving the linear system leads to accelerate

fast this resolution. Section 3 deals with meshing

the aerodynamic flow-field. The aim is to

understand its functionality and propose in

section 4 a clear and easy version in Fortran 90 to

be maintained.

III. COMPUTATION OF THE FLOW FIELD

This section is devoted to a numerical method for

computing the flow field around profile. The

numerical technique is based upon a general

formulation for the potential field equation using

Galerkin technique finite element approach. The

conservation of the potential field uses the

divergence equation which is discretized by the

numerical method of finite element. The finite

volume could be used to solve this equation, but

using this method is greedy for computation time

compared with the first one.

The computational domain is noted

which is connected to open region in whose

boundary ​ and ​n ​is the outward pointing unit

normal of surface element. Considering ​g ​the data

function defined on . On boundary ​, we apply

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

24 © 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

R2
Ω =] a, b[×]c, d[

Ω Γ

the surface flow tangency condition. Function ​g

presents flux across the boundary ​. The boundary

conditions could be homogenous Dirichlet,

Neumann type or mixt conditions depending on

physical hypothesis of the problem. The full

potential equation Neumann conditions is written

in conservation form as:

(1)

where, ​ ​is the potential function, and ​ ​is the

density gaz. Assuming that all the quantities are

not dimensionalized by the free stream values. By

appealing to the isentropic flow assumption we

can write the density ​as a nonlinear function of

the potential, such as

(2)

where, ​ is the free stream Mach number and

the ratio of specific heats. The isentropic

assumption of the potential flow model leads to

inaccurate physics for transonic flows with strong

shocks. In what to follows, we give more details of

the Finite Element Method (FEM) applied to the

full Potential equation (1). There are many

references [1, 10] which describe this method. The

paper [1] is for FEM implementation, and the the

paper [10] is for FEM theory. Let us define a space

as function space where all the functions are

bounded [quadratic integrable]:

(3)

Assuming that all functions are regular, and

supposing that the solution ​satisfies

Multiplying each terms of equation (1) by a given

weight-function ​ . Next, integrating over ​ with

using Green formula, we obtain:

(4)

Indeed, the Green formula and the minimal

regularity of ​and ​are used in order to integrals

get a sense, . For that, it is consistent

to suppose that the function ​ ​is integrable over

. The weak form of the full potential equation is

discretized by Galerkin Finite Element Method

(FEM) [13, 3, 4]. Because this discretization

scheme is well know. The weak formulation of

problem (1) is given by:

(5)

Defining Hilbert spaces ​ ​ ​and ​ ​ ​of finite dimensional as follows:

(6)

In this context ​ ​is the maximum size of the cells

or cells that make up the mesh. Galerkin method

is applied in order to find weak formulation to

approximate the defined problem in finite

dimensional space. Indeed, the finite element

approach consists in replacing space ​ ​ of test

functions by subspace ​of finite dimension

(7)

Let us introduce Galerkin method with an abstract

problem posed as a weak formulation on a Hilbert

space ​ ​ ​ ​, namely,

(8)

Here, is a bilinear form in the space ​ ​ ​ ​, and ​ ​is a bounded linear functional on ​ ​,

which are given by:

(9)

Let us be given two integers ​ ​and ​ ​. Assuming that the steps of mesh ​ ​and ​ ​following

respectively two directions ​x ​and ​y ​are given by:

(10)

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

25© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

{
div(ρ∇φ) = 0, in Ω
ρ∂φ∂n = g, in Γ

ρ = 1 + γ − 1
2 M2

∞(1− |∇φ|2)
) 1
γ−1

,)

∫
Ω
ρ∇φ∇ =

∫
Γ
gψ.𝜓𝜓

H1(Ω) =
{
v : Ω→ R :

∫
Ω
v2,

∫
Ω
v2
x,

∫
Ω
v2
y <∞

}
.

Find φ ∈H1(Ω) such that : ∀ ∈ H1(Ω)∫
Ω
ρ∇φ∇ =

∫
Γ
gψ .

𝜓𝜓

𝜓𝜓

Vh = {φh ∈ H1(Ω),∀ρh ∈ L2(Ω), ρh
∂φh
∂n

= g}, Wh = { h ∈ H1(Ω), ψh = Constant}.𝜓𝜓
ρh = 1 + γ − 1

2 M2
∞(1− |∇φh|2)

) 1
γ−1

, in Ω∫
Ω
ρh∇φh∇ h dΩ =

∫
Γ
gψh dΓ, in Ω𝜓𝜓

)

Find φh ∈ Vh such that ∀ k ∈Wh

a(φh, ψh) = l(h).
𝜓𝜓

𝜓𝜓

a(φh, ψh) =
∫

Ω
ρh∇φh∇ h dΩ, l(h) =

∫
Γ
gψh dΓ.𝜓𝜓𝜓𝜓

hx = b− a
Nx

, hy
d− c
Ny

.

φ ρ

ρ

M∞
γ

φ φ ∈ H1(Ω).

𝜓𝜓 Ω

φ

φ, ψ ∈ H1(Ω)
g

Ω

H1(Ω)

Vh Wh

h

H1(Ω)
​ ​ Vh ​ Vh

a ., .) Vh ×Wh l Wh

Nx Ny hx hy

A rectangular mesh ​ ​ ​on is defined by:

(12)

Denoting the total

number of the mesh nodes, including boundary

nodes ​ ​ ​ ​, and internal nodes

. Let ​ ​be the number of

rectangular elements, we may take as well

. Now let us go back to

weak form (8). Here we look for a function

which is continuously differentiable. We recall

that basis functions ​are all functions

allowing to make an interpolation between the

given points (at equal distance), and to make a

piecewise continous linear polynomial. One

characteristic for all these functions is the

following:

(11)

Every is equal to 1 only at the node and

zero at all the other ones. Another characterisitc is

that every is only non-zero at element

number ​and , that is, elements that share

node . Note that all basis functions

are continuously differentiable. In our specific

problem, we are in search of an approximate

function which is pieceswise linear on

each element. As in 1D, we know that we can write

it as a linear combination of basis functions

​:

(13)

And again in nodal basis,

(14)

Note that we are using ​in terms of basis functions . We put these two expressions in weak

form (8) and complete the expression:

(15)

By bilinearity of and by linearity of , we get

(16)

Expression (16) is written in compact form as:

(17)

Here,

(18)

(19)

A ​and ​F ​are given as follows:

(20)

(21)

Denoting by the space of polynomials of partial

degree less or equal to 1 from each of the variables

and ​ ​. The space is generated by 1,

because it is generated by tensor products of

linear functions in and in , which is described

in terms of its canonical basis:

(22)

The numerical module uses reference elements

which are elements with simple shapes and sizes.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

26 © 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

Qk Ω

Qk =
{

(x, y); ihx ≤ x ≤ (i+ 1)hx, jhy ≤ y ≤ (j + 1)hy, i = 0, . . . , Nx, j = 0, . . . , Ny

}
.

fhi (xj) = δij .

Nt = (N1 + 2) × (N2 + 2)

Nb = 2(N1 +N2) + 4

φh(x, y) =
NI∑
i=1

φif
h
i (x, y).

φh(xj , yj) =
NI∑
i=1

φif
h
i (xj , yj).

NI = N1 × N2 Nh

a

NI∑
j=1

jf
h
j (x, y),

NI∑
i=1

φif
h
i (x, y)

)
= l

NI∑
j=1

jf
h
j (x, y)

)
.𝜓𝜓 𝜓𝜓))

N∑
j=1

j

NI∑
i=1

a(fhj (x, y), fhi (x, y))φi =
NI∑
j=1

j l(fhj (x, y)).𝜓𝜓 𝜓𝜓

TAφ = TF⇒ Aφ = F.𝜓𝜓

= . . . ψNI
)T
.

φ =
(
φ1 φ2 . . . φNI

)T
.

𝜓𝜓

A =


a(fh1 , fh1) a(fh1 , fh2) . . . a(fh1 , fhNI)
a(fh2 , fh1) a(fh2 , fh2) . . . a(fh2 , fhNI)

...
...

...
...

a(fhNI , f
h
1) a(fhNI , f

h
2) . . . a(fhNI , f

h
NI

)

 .

F =
(
l(fh1) l(fh2) . . . l(fhNI)

)T
.

Q1 = {q; q(x) = a0 + a1x+ a2y + a3xy}.

Nh = (N1 + 1)× (N2 + 1)
φ(x, y)

(fhi)1≤i≤NI

fhi (x) ith

fhi (x)
i i + 1

(fhi)1≤i≤NIi

φh(x, y)

(fhi)1≤i≤NI

𝜓𝜓 (fhi)1≤i≤NI

la(., .)

Q1

x y Q1 x, y, xy

x y

(
φ1 φ2

In a reference space, it is common to all elements

of the same type. We will compute the four

local basic functions on each

quadrangulation as follows:

(26)

Let ​be an element of the mesh. There exists a

unique affine bijective mapping ​such that

. The affine transformation permit

to pass from unit square ​to square . In view

of Figure 1, it is clearly enough to map the origin

to point ​S ​ of coordinates ,

and then to multiply abscissae by , and

ordinates by ​. This yields:

(27)

The inverse mapping is given by:

 (28)

Figure 1: ​The affine change of variable from the reference element ​to the generic element .

The calculation of rigidity matrix ​A ​is done with

node by node. We compute all contributions of

each element that leads to similary calculation at

each time. The matrix is

defined on each grid ​, it is the elementary

matrix 4 × 4, computed one time and defined with

the following expression:

(29)

The rigidity matrix ​A ​is computed by assembly

process, which is reduced to elementary

contributions ​on each grid ​of

quadrangulation:

(30)

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

27© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

(fhl)1≤l≤4

Qk

Fk

Fk

 Q̂ Qk

Fk(Q̂) =Qk

Â1(0, 0) (x(Qk), y(Qk))
hx

hx

∀l ∈ {1, . . . , 4}, fhl (x, y) = ql
x− xi
hx

,
y − yj
hy

)
.)

Fk

(
x̂
ŷ

)
=
(
x(Qk) + hxx̂
y(Qk) + hy ŷ

)
.

F−1
k

(
x
y

)
=

x−x(Qk)
hx

y−y(Qk)
hy

)
.)

Â4(0, 1)

Â1(0, 0) Â2(1, 0)

Â4(1, 1)

Q̂

S

Qk

•

••

•

••

• •

y

x

Q̂ Qk

Ai,j =
∫

Ωi,j
∇fhi ∇fhj dΩ.

Ai,j =
Nh∑
k=1

ρi,jAi,j(Qk),
(Ai,j) 1≤i≤4

1≤j≤4

Ωi,j

Ai,j Ωi,j

polynomials of type associated to the unit

square ​with using Lagrange condition:

(23)

Considering ​the coordinates of the unit

square ​presented in Figure 1. Otherwise, since

polynomial function is zero in both segments

and , the expression of is

simplified:

(25)

Since we have already computed the basic

functions on the unit square , we compute the

qi(Âj) = δij .

q1(x̂, ŷ) = (1− x̂)(1− ŷ). (24)

By the same way, the rest of polynomials are deter-

mined as follows:

qj(x̂, ŷ) =

 x̂(1− ŷ), if j = 2,
x̂ŷ, if j = 3,
(1− x̂)ŷ, if j = 4.

Q1

Q̂

x, ŷ
Q̂

q1

[Â3Â4] [Â2Â3] q1

 Q̂

We see that the coefficients ​can thus be

computed element-wise. The idea is that many of

the elements do not need to be

computed, since it is known that they vanish as

soon as the intersection of the supports of ​and

​does not meet . This vastly reduces the

Ai,j

Ai,j(Qk)

fhj
fhj Qk

symmetric and positive definite whatever the

value of the density ​ ​. We solve this linear system

with iterative method by considering that is the

control is so fixed to find values of potential field

​at the nodes of our elliptic problem. There are

several iterative techniques designed to solve such

matrices, and the method used here is method

ICCG (Incomplete Cholesky Conjugate Gradient).

It is based principally on preconditioning of

factorisation of linear system Cholesky. The

advantage to use the numerical method ICCG is to

compute parameters include in the algorithm

without any estimation. We use generalized mesh

whose nodes are not aligned with the flow

direction.

IV. MESHING THE PHYSICAL DOMAIN

Figure 2: ​Identification of meshing regions.

When considering transonic flows over a wing,

three regions can be identified: the boundary

layer, the region around the shock, and the

farfield. These regions are presented in Figure 2.

The profile is extracted as a list of points. We

show in Figure 3 the nodes in the standardized

profile that are less than 2500. Noticing that an

airfoil

is

divided

into

three

main

parts:

● The first part of the leading edge profile has a

relatively high curvature. It is needed to have

enough high discretization, it is not done only

for the leading edge. However, the well

discretization of break point is also necessary.

● The second part consists of the middle of the

profile to the upper and lower part. We

simulate flow field in transonic regime, so it

must have a grid with points closer in order to

capture the shock with accuracy. Indeed, the

discretization being done on the skin will

spread to the limits of the field.

● Finally, we arrive at the trailing edge. The

mesh should tighten over the discretization in

order to predict the passage of the flow in this

section.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

28 © 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

Leading edge refinement Trailing edge refinement

Mesh released

Mesh of boundary layer

ρ

φ

φt

φt

φ

computer load. Likewise, the right-hand side of

the linear system can be written as:

(31)

Solve the system (8) is equivalent to solve the

following linear system given by (17). The

formulation of the FE approach give us a linear

system of equations with dimension ​N ​× ​N​. This

linear system shows that the matrix ​A ​is

li =
Nh∑
k=1

li(Qk).

We mesh around the initial profile in order to

build a new exterior mesh. From this profile, an

automatic meshing is built with grid that size is

. The new mesh is generated with form im × jm

limit of many sequences of ​. The convergence
φt

that takes ​C ​topology to surround the wing, and to

better capture the wake of this mesh. The shape of

the mesh was expanded from the cord and a

widening of the trailing edge to infinity.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

29© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

Figure 3: ​Profile of a given data.

The meshing zones for the two cases are

presented in the following pictures of Figure 4.

The flow around the profile is fairly simple. We

are dealing with a 2D transonic case, thus

develops a shock on the upper surface of the

profile. Under these conditions, the only

production of the trail is through the shock. The

mesh is distinguished by two types parabolic and

hyperbolic, the first is shown in the left picture of

Figure 5, and the second is shown in the right

picture of Figure 6. The hyperbolic mesh is very

different from parabolic mesh. The first has

specifically curvature almost in the form of a

circle. Hyperbolic mesh is also aligned in

comparison with the parabolic.

The generation of mesh meets all requirements of

the flow fluid inviscid and anticipates the meshing

of boundary layer. We deal the profile that has

icing form. This case is very interesting because

we introduce the tip form what explain the tighten

discretization of some zones.

The nodes have to be distributed on perpendicular

on profile. If we are placed near from the

boundary, then the mesh evolves from small node

near the profile to the big node. Then we need to

improve the geometry in order to adapt this mesh.

The node step evolves in length direction. On the

contrary in width direction, it does not evolve

because this boundary is considered the near part

of trailing edge. Near of the trailing edge, the

nodes should be small. The flare of mesh is

realized in wake in order to have node near from

boundary and the ratio of length and width is not

large. Its target is to anticipate putting up the

mesh of the boundary layer and wake in order to

have no numerical stability problem.

Figure 4: ​Meshing around profile given in Figure 3. The left picture presentes a parabolic mesh. The

right picture presentes a zoom of the left picture to get a hyperbolic mesh

Figure 5: ​ Parabolic mesh around the profile. ​Figure 6: ​Hyperbolic mesh around the profile.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

30 © 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

V. THE REENGINEERING OF THE FLOW
FIELD COMPUTATION MODULE

Much of the programming prior to 1970 was what

is now considered unstructured which is a huge

amount of Fortran code that is too valuable to

throw away, but very expensive to maintain. It is

often synonymous with the pejorative term

spaghetti code, meaning source code with a

complex and tangled control structure. The need

for quality assurance is underlined by research

such as that due to Les Hatton [5]. Hatton has

analysed a large number of commercial scientific

software packages written in Fortran 77. The

Fortran 77 codes had an average of 12 statically

detectable faults per 1000 executable statements.

Another investigation of software quality in

Fortran codes has been made by Hopkins [8]. He

has investigated how the quality metrics of some

well known public domain packages and

published algorithms have changed with time.

There are many references that investigate the

re-enginering physical codes in Fortran. In [6],

the author proposes the use of software

engineering metrics as an additional tool for the

enchancement of quality in climate models.

We start to reengineer the flow field computation

module by suppressing the command goto which

is a statement found in many computer

programming languages as like Basic and Fortran.

It is a combination of the English words go and to.

It performs a one-way transfer of control to

another line of code; in contrast a function call

normally returns control. The jumped-to locations

are usually identified using labels, though some

languages use line numbers. This command goto

is a form of branch or jump statement. It has not

been appreciated for modern programming since

revolution of structured programming. In order to

clarify and optimize efficiently the module, we will

use classical structured programming.

Consequently, we use structures such as

conditional jumps (if ​. . . ​then ​. . . ​else) or loops

(for, while, etc) in order to integrate the modern

programming language.

For repeated execution of similar things, loops are

used in the module with label such as do-loop

presented in Listing 1. This standard loop is

considered archaic in Fortran 77. They are

modified to another without label depending on

situation. The simple situation is given by

Listing 2.

The common statement provides the combination

of memory areas that can be shared by different

program units (functions procedures). Command

common is replaced by passing by arguments

between procedures. In what to follows, we use

dynamic allocation of tables. Indeed, the most of

static tables are replaced with dynamic allocation

to increase genericity of the module.

Consequently, it fits the dimensions of any

dimension mesh. In fact, the initial code could

provide only meshes with predefined dimensions

(and therefore not modifiable). The statements

common are specification statements and have a

general form defined in Listing 3. Here,

blockname is a common block name. Variables

var1 and var2 are a list of variable names, array

names, and array declarators. To Suppress

command common in this example, we use

procedure such as Subroutine that name takes

blockname, and arguments are var1 and var2.

This example of reengineering code is presented

in Listing 4.

Next, we suppress files that unnecessary output

and binary temporary files. The initial code in

Fortran 77 uses the large output files, which are

most often unnecessary. For this reason, we are

reengineering the code in order to conserve only

useful files. The binary files defines the file that

could be stocked all information that are

presented in memory. Some variables of the

module are not passed by routine’s arguments.

They are not saved in command common: these

variables are directly in intermediate binary files.

Consequently, the output files are been replaced

by defining new variables with passing arguments

between the routines in order to respect acutal

programming standard.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

31© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

All routines of reading/writing files are grouped in

commune library in order to homogenize the

functionality of the module. Now we justify how

implicit declarations are suppressed (see Listing

5). We declare explicitly all variables in order to

prevent errors. That whay we use instruction

implicit none in every blocs of declaration

(see Listing 6). This instruction obligates the

programmer to declare explicitly each variable.

Listing 1: Loops with standard format in Fortran 77 Listing 2: Loops without label in Fortran 90

Listing 3: Implicit declarations in Fortran 77 Listing 4: Explicit declarations in Fortran 90

Listing 5: Implicit declarations in Fortran 77 Listing 6: Explicit declarations in Fortran 90

The numerical module provides many physical

results in order to give us the boundary layer

properties (heat transfert coefficient and recovery

temperature). These results are presented in

Tecplot format. In particulary, the Figure 7 shows

the density result. The red regions located at

leading edge and at places near from the layer

boundary have the large value of density. There

exist low values of density in upper part. The

average values of density are presented in green

color.

Figure 7:​ Density gaz around the profile.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

32 © 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

1 DO 1 I1 = IV1 , FV1 , S1
2 insrtuctions
3 DO 2 I2 = IV2 , FV2 , S2
4 instructions
5 2 CONTINUE
6 DO 3 I3 = IV3 , FV3 , S3
7 instructions
8 3 CONTINUE
9 1 CONTINUE

1 DO 1 I1 = IV1 , FV1 , S1
2 insrtuctions
3 DO 2 I2 = IV2 , FV2 , S2
4 instructions
5 END DO
6 DO 3 I3 = IV3 , FV3 , S3
7 instructions
8 END DO
9 END DO

1 common / blockname /var1 ,var2 1 Subroutine blockname (var1 ,var2)

1 implicit real(a-h,o-z) 1 implicit none

Conflict of Interests

The authors declare that there is no conflict of

interests.

REFERENCES

1. Klaus-J¨urgen Bathe. ​Finite element

procedures​. Klaus-Jurgen Bathe, 2006.

2. MO Bristeau, O Pironneau, R Glowinski, J

Periaux, P Perrier, and G Poirier. On the

numerical solution of nonlinear problems in

fluid dynamics by least squares and finite

element methods (ii). application to transonic

flow simulations. ​Computer Methods in

Applied Mechanics and Engineering​, 51(1-3):

363–394, 1985.

3. H Deconinck and Ch Hirsch. Finite element

methods for transonic blade-to-blade

calculation in turbomachines. ​ASME Journal

of Engineering for Power​, 103(4): 665–667,

1981.

4. Wagdi G Habashi and Mohamed M Hafez.

Finite element solutions of transonic flow

problems. ​Aiaa Journal​, 20(10): 1368–1376,

1982.

5. Les Hatton. The t-experiments: errors in

scientific software. In ​Quality of Numerical

Software​, pages 12–31. Springer, 1997.

6. A Henderson-Sellers, AJ Pitman, B

Henderson-Sellers, D Pollard, and JM Verner.

Applying software engineering metrics to land

surface parameterization schemes. ​Journal of

climate​, 8(5):1043–1059, 1995.

7. TL Holst, JW Slooff, H Yoshihara, WF

Ballhaus Jr, and BM Spee. Applied

computational transonic aerodynamics.

Technical report, DTIC Document, 1982.

8. TR Hopkins. Is the quality of numerical

subroutine code improving? In ​Modern

software tools for scientific computing​, pages

311–324. Springer, 1997.

9. Antony Jameson, T d Baker, and N Weatherill.

Calculation of inviscid transonic flow over a

complete aircraft. In ​24th Aerospace Sciences

Meeting​, 1986.

10. Claes Johnson. ​Numerical solution of partial

differential equations by the finite element

method​. Courier Corporation, 2012.

11. J South M. Hafez and E Murman. Artificial

compressibility methods for numerical

solutions of transonic full potential equation.

Aiaa Journal ​, 17(8): 838–844, 1979.

12. Richard B Pelz and A Jameson. Transonic flow

calculations using triangular finite elements.

AIAA journal​, 23(4): 569–576, 1985.

13. Philip B Poll. ​Full potential analysis and

design of transonic propellers​. PhD thesis,

Massachusetts Institute of Technology, 1991.

14. Guilherme Silva, Otavio Silvares, and Euryale

Zerbini. Simulation of an airfoil

electro-thermal antiice system operating in

running wet regime. In ​43rd AIAA Aerospace

Sciences Meeting and Exhibit​, page 1374,

2005.

15. David P Young, Robin G Melvin, Michael B

Bieterman, Forrester T Johnson, Satish S

Samant, and John E Bussoletti. A locally

refined rectangular grid finite element

method: application to computational fluid

dynamics and computational physics. ​Journal

of Computational Physics​, 92(1):1–66, 1991.

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

33© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

