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I. ABSTRACT 

In this paper, we reengineer the flow field        

computation module. This module generates a      

structured and an automatic mesh and in the        

next step it solves the potential equation of the         

flow field. The key concepts is to recall the use of           

the finite element method in solving Laplacian       

problem. We will show the feasibility of the full         

potential equation in the simulations of      

bi-dimensional steady compressible flows.    

Formally, we suggest an easiest version in order        

to generalize it in the future. This work is         

summarized by converting the old version which       

is writing in Fortran 77 to another programming        

language Fortran 90. 

Keywords: ​potential field, finite elements,      

software tool, Spaghetti code, mathematical     

model. 

Author: Univ. Bretagne-Sud, UMR 6205, LMBA,      

F-56000 Vannes, France. 

II. INTRODUCTION 

Icing is due to the impact of supercooled water         

droplets on the wall of the aircraft. The        

supercooling of water is almost stable      

equilibrium. This water remains liquid when its       

temperature is negative. The drops that impact       

solidify instantly almost because of their unstable       

state. Frost is specific form associated to the ice         

which has a major disadvantage while phase of        

aircraft flight. Frost changes the profile plane       

(wings, rudders . . . ) and degrades the         

aerodynamic performance. The ice can block the       

rudders, measuring instruments, reduce the     

visibility through the windshield and it can also        

enter the engine. The paper [14] deals with the ice          

accretion on aircraft wings and with stabilizers       

that can cause some aerodynamic performance      

degradation. Weight increase, control and     

maneuver abilities difficulties that may reduce the       

aircraft operational safety margin. 

The development of bi-dimensional numerical     

code which uses a predictor and corrector       

formulations is presented. At first the icing form        

has been predicted. After a first loop, we obtain a          

form of predictor of ice shape. To take into         

account the influence ice on the aerodynamic flow        

field, a new mesh is created assuming that the ice          

is normal to the surface of the body. A new          

iteration is then performed. The goal of       

reengineering this code (called module in the rest        

of the paper) is to reduce the overall time and          

memory required to compute physical variables      

(density, pressure, temperature) on the profile      

covered by the estimated shape. 

Compressible fluid flow simulations needed for      

aerodynamic applications can be modeled with      

different degree of sophistication. The simplest      

model is the full potential equation which       

assumes inviscid, irrotational and isentropic     

flows. Numerical techniques for the solution of       

the full potential equation equation was developed       

respectively in the 1970s and in the 1980s [2, 11, 7,           

9, 12]. Indeed, compressible flow around entire       

aircrafts have been simulated. For example, the       

full potential equation has been solved with wing,        

body, struts, and nacelles [15]. The main       

considerations addressed in this paper are the full        

potential. We use a fully structured finite element        

discretization for the full potential equation and       

the interface condition. 2D transonic flow      
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simulations around airfoil are investigated. This      

paper first presents a short description of the        

module which computes the flow field around       

profile and generates aerodynamic results. It      

solves the potential equation of the flow field. 

It is easy to produce poor quality software in         

Fortran 77 than in any other language.       

Consequently, there is a need for software tools to         

aid the development of scientific and engineering       

applications in Fortran 90. Fortran 90 offers       

many significant advantages compared to     

previous standard Fortran 77. It brings dynamic       

memory management, abstract data types, data      

hiding, array notation and explicit subprogram      

interfaces. When we will use correctly these new        

features in the module, it allows us a better         

quality software and a perform application. In this        

paper, we investigate the software quality tools,       

covering Fortran 90 in order to re-engineer the        

module. 

Since 1980, several numerical models for icing       

simulation were developed in the field of       

aeronautics. Several software packages have been      

designed by different groups of researchers      

around the world to simulate the accretion regime        

in local wet and dry on a wing in two dimensions           

(see table 1). The main objective of this paper is to           

take aerodynamic flow-field, explain this     

mathematical module, and propose a clear and       

easy version to be maintained in Fortran 90. The         

interest is to reduce the computational cost, to        

reduce the memory requirement and to improve       

the accuracy of the solution. 

 

Table 1: ​The numerical code developed by differents laboratories. 

Name of code Laboratory/country year Person developing code 

Sic Onera/France 1990 Gent 

Trajice 2D Englend  1992 Guffond 

Canice Canada 1994 Paraschivoiu 

Lewice 2D USA 1995 Wright 

Cira Italy 1996 Migione 

 

The organization of the rest of this paper is as          

follows. Section 2 describes the conservation of       

the potential field used the divergence equation       

which is discretized by the numerical method of        

finite element. The using of the numerical method        

for solving the linear system leads to accelerate        

fast this resolution. Section 3 deals with meshing        

the aerodynamic flow-field. The aim is to       

understand its functionality and propose in      

section 4 a clear and easy version in Fortran 90 to           

be maintained. 

III. COMPUTATION OF THE FLOW FIELD 

This section is devoted to a numerical method for         

computing the flow field around profile. The       

numerical technique is based upon a general       

formulation for the potential field equation using       

Galerkin technique finite element approach. The      

conservation of the potential field uses the       

divergence equation which is discretized by the       

numerical method of finite element. The finite       

volume could be used to solve this equation, but         

using this method is greedy for computation time        

compared with the first one. 

The computational domain is noted     

which is connected to open region in whose        

boundary ​ and ​n ​is the outward pointing unit         

normal of surface element. Considering ​g ​the data        

function defined on . On boundary ​, we apply         
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R2
Ω =] a, b[×]c, d[ 

Ω Γ



the surface flow tangency condition. Function ​g       

presents flux across the boundary ​. The boundary        

conditions could be homogenous Dirichlet,     

Neumann type or mixt conditions depending on       

physical hypothesis of the problem. The full       

potential equation Neumann conditions is written      

in conservation form as: 

 

(1) 

 

where, ​ ​is the potential function, and ​ ​is the          

density gaz. Assuming that all the quantities are        

not dimensionalized by the free stream values. By        

appealing to the isentropic flow assumption we       

can write the density ​as a nonlinear function of         

the potential, such as 
 

(2) 

 

where, ​ is the free stream Mach number and         

the ratio of specific heats. The isentropic       

assumption of the potential flow model leads to        

inaccurate physics for transonic flows with strong       

shocks. In what to follows, we give more details of          

the Finite Element Method (FEM) applied to the        

full Potential equation (1). There are many       

references [1, 10] which describe this method. The        

paper [1] is for FEM implementation, and the the         

paper [10] is for FEM theory. Let us define a space           

as function space where all the functions are        

bounded [quadratic integrable]: 

(3) 

 

Assuming that all functions are regular, and       

supposing that the solution ​satisfies    

Multiplying each terms of equation (1) by a given         

weight-function ​ . Next, integrating over ​ with         

using Green formula, we obtain: 

 

(4) 

 

Indeed, the Green formula and the minimal       

regularity of ​and ​are used in order to integrals          

get a sense, . For that, it is consistent         

to suppose that the function ​ ​is integrable over         

. The weak form of the full potential equation is           

discretized by Galerkin Finite Element Method      

(FEM) [13, 3, 4]. Because this discretization       

scheme is well know. The weak formulation of        

problem (1) is given by: 

 

 
(5) 

Defining Hilbert spaces ​ ​ ​and ​ ​ ​of finite dimensional as follows: 

 
(6) 

In this context ​ ​is the maximum size of the cells           

or cells that make up the mesh. Galerkin method         

is applied in order to find weak formulation to         

approximate the defined problem in finite      

dimensional space. Indeed, the finite element      

approach consists in replacing space ​ ​ of test        

functions by subspace   ​of finite dimension 

 

 

(7) 

 

Let us introduce Galerkin method with an abstract        

problem posed as a weak formulation on a Hilbert 

space ​ ​ ​ ​, namely, 

(8) 

 

Here, is a bilinear form in the space ​ ​ ​ ​, and ​ ​is a bounded linear functional on ​ ​,                  

which are given by: 

 
(9) 

Let us be given two integers ​ ​and ​ ​. Assuming that the steps of mesh ​ ​and ​ ​following                   

respectively two directions ​x ​and ​y ​are given by: 

(10) 
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{
div(ρ∇φ) = 0, in Ω
ρ∂φ∂n = g, in Γ

ρ = 1 + γ − 1
2 M2

∞(1− |∇φ|2)
) 1
γ−1

,)

∫
Ω
ρ∇φ∇ =

∫
Γ
gψ.𝜓𝜓

H1(Ω) =
{
v : Ω→ R :

∫
Ω
v2,

∫
Ω
v2
x,

∫
Ω
v2
y <∞

}
.

Find φ ∈H1(Ω) such that : ∀ ∈ H1(Ω)∫
Ω
ρ∇φ∇ =

∫
Γ
gψ .

𝜓𝜓

𝜓𝜓

Vh = {φh ∈ H1(Ω),∀ρh ∈ L2(Ω), ρh
∂φh
∂n

= g}, Wh = { h ∈ H1(Ω), ψh = Constant}.𝜓𝜓
ρh = 1 + γ − 1

2 M2
∞(1− |∇φh|2)

) 1
γ−1

, in Ω∫
Ω
ρh∇φh∇ h dΩ =

∫
Γ
gψh dΓ, in Ω𝜓𝜓

)

Find φh ∈ Vh such that ∀ k ∈Wh

a(φh, ψh) = l( h).
𝜓𝜓

𝜓𝜓

a(φh, ψh) =
∫

Ω
ρh∇φh∇ h dΩ, l( h) =

∫
Γ
gψh dΓ.𝜓𝜓𝜓𝜓

hx = b− a
Nx

, hy
d− c
Ny

.

φ ρ

ρ

M∞
γ

φ φ ∈ H1(Ω).

𝜓𝜓 Ω

φ

φ, ψ ∈ H1(Ω)
g

Ω

H1(Ω)

Vh Wh

h

H1(Ω)
​ ​ Vh  ​ Vh

a ., .) Vh ×Wh l Wh

Nx Ny hx hy



A rectangular mesh  ​ ​  ​on     is defined by:  

  

 

(12) 

 

Denoting the total   

number of the mesh nodes, including boundary       

nodes ​ ​ ​ ​, and internal nodes     

. Let ​ ​be the number of       

rectangular elements, we may take as well       

. Now let us go back to       

weak form (8). Here we look for a function         

which is continuously differentiable. We recall     

that basis functions ​are all functions      

allowing to make an interpolation between the       

given points (at equal distance), and to make a         

piecewise continous linear polynomial. One     

characteristic for all these functions is the       

following: 

  

(11 ) 

  

Every is equal to 1 only at the node and         

zero at all the other ones. Another characterisitc is 

that every is only non-zero at element       

number ​and , that is, elements that share        

node . Note that all basis functions       

are continuously differentiable. In our specific      

problem, we are in search of an approximate     

function which is pieceswise linear on      

each element. As in 1D, we know that we can write           

it as a linear combination of basis functions        

​: 
 

(13) 

 

And again in nodal basis, 

(14) 

 

Note that we are using ​in terms of basis functions . We put these two expressions in weak                 

form (8) and complete the expression: 

 

(15) 

 

By bilinearity of and  by  linearity  of ,  we  get  

 

(16) 

 

Expression (16) is written in compact form as: 

 

(17) 
 

Here, 

 

(18) 

 

(19) 

 

A ​and ​F ​are given as follows: 

 

 

(20) 

 

 

 

 

 

(21) 

 

Denoting by the space of polynomials of partial        

degree less or equal to 1 from each of the variables 

and ​ ​. The space is generated by 1,       

because it is generated by tensor products of       

linear functions in and in , which is described        

in terms of its canonical basis: 

 

(22) 

 

The numerical module uses reference elements      

which are elements with simple shapes and sizes.        
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Qk Ω

Qk =
{

(x, y); ihx ≤ x ≤ (i+ 1)hx, jhy ≤ y ≤ (j + 1)hy, i = 0, . . . , Nx, j = 0, . . . , Ny

}
.

fhi (xj) = δij .

Nt = (N1 + 2) × (N2 + 2)

Nb = 2(N1 +N2) + 4

φh(x, y) =
NI∑
i=1

φif
h
i (x, y).

φh(xj , yj) =
NI∑
i=1

φif
h
i (xj , yj).

NI = N1 × N2 Nh

a

NI∑
j=1

jf
h
j (x, y),

NI∑
i=1

φif
h
i (x, y)

)
= l

NI∑
j=1

jf
h
j (x, y)

)
.𝜓𝜓 𝜓𝜓) )

N∑
j=1

j

NI∑
i=1

a(fhj (x, y), fhi (x, y))φi =
NI∑
j=1

j l(fhj (x, y)).𝜓𝜓 𝜓𝜓

TAφ = TF⇒ Aφ = F.𝜓𝜓

= . . . ψNI
)T
.

φ =
(
φ1 φ2 . . . φNI

)T
.

𝜓𝜓

A =


a(fh1 , fh1 ) a(fh1 , fh2 ) . . . a(fh1 , fhNI )
a(fh2 , fh1 ) a(fh2 , fh2 ) . . . a(fh2 , fhNI )

...
...

...
...

a(fhNI , f
h
1 ) a(fhNI , f

h
2 ) . . . a(fhNI , f

h
NI

)

 .

F =
(
l(fh1 ) l(fh2 ) . . . l(fhNI )

)T
.

Q1 = {q; q(x) = a0 + a1x+ a2y + a3xy}.

Nh = (N1 + 1)× (N2 + 1)
φ(x, y)

(fhi )1≤i≤NI

fhi (x) ith

fhi (x)
i i + 1

( fhi )1≤i≤NIi

φh(x, y)

(fhi )1≤i≤NI

𝜓𝜓 (fhi )1≤i≤NI

la(., .)

Q1

x y Q1 x, y, xy

x y

(
φ1 φ2

In a reference space, it is common to all elements          

of the same type. We will compute the four        



local basic functions on each     

quadrangulation as follows: 

 

(26) 

 

Let ​be an element of the mesh. There exists a          

unique affine bijective mapping ​such that      

. The affine transformation permit    

to pass from unit square ​to square . In view        

of Figure 1, it is clearly enough to map the origin           

to point ​S ​ of coordinates ,     

and then to multiply abscissae by , and        

ordinates by ​. This yields: 

 

(27) 

 

The inverse mapping is given by: 

 (28) 

 
 
 

 

 

 

 

 

 

Figure 1: ​The affine change of variable from the reference element ​to the generic element . 

The calculation of rigidity matrix ​A ​is done with         

node by node. We compute all contributions of        

each element that leads to similary calculation at      

each time. The matrix is     

defined on each grid ​, it is the elementary         

matrix 4 × 4, computed one time and defined with          

the following expression: 

  
(29) 

The rigidity matrix ​A ​is computed by assembly        

process, which is reduced to elementary      

contributions ​on each grid ​of     

quadrangulation: 

 

(30) 

Volume 18 | Issue 1 | Compilation 1.0

Lo
nd

on
 Jo

ur
na

l o
f E

ng
in

ee
ri

ng
 R

es
ea

rc
h

27© 2018 London Journals Press

Reengineering of Aerodynamic Flow-Field Module

(fhl )1≤l≤4

Qk

Fk

Fk

 Q̂ Qk

Fk(Q̂) =Qk

Â1(0, 0) (x(Qk), y(Qk))
hx

hx

∀l ∈ {1, . . . , 4}, fhl (x, y) = ql
x− xi
hx

,
y − yj
hy

)
.)

Fk

(
x̂
ŷ

)
=
(
x(Qk) + hxx̂
y(Qk) + hy ŷ

)
.

F−1
k

(
x
y

)
=

x−x(Qk)
hx

y−y(Qk)
hy

)
.)

Â4(0, 1)

Â1(0, 0) Â2(1, 0)

Â4(1, 1)

Q̂

S

Qk

•

••

•

••

• •

y

x

Q̂ Qk

Ai,j =
∫

Ωi,j
∇fhi ∇fhj dΩ.

Ai,j =
Nh∑
k=1

ρi,jAi,j(Qk),
(Ai,j) 1≤i≤4

1≤j≤4

Ωi,j

Ai,j Ωi,j

        

polynomials of type associated to the unit      

square ​with using Lagrange condition: 

  

(23) 

 

Considering ​the coordinates of the unit      

square ​presented in Figure 1. Otherwise, since       

polynomial function is zero in both segments       

and , the expression of is      

simplified: 

 

 

(25) 

 
 

Since we have already computed the basic       

functions on the unit square , we compute the        

qi(Âj) = δij .

q1(x̂, ŷ) = (1− x̂)(1− ŷ). (24) 

By the same way, the rest of polynomials are deter-

mined as follows:

qj(x̂, ŷ) =

 x̂(1− ŷ), if j = 2,
x̂ŷ, if j = 3,
(1− x̂)ŷ, if j = 4.

Q1

Q̂

x, ŷ
Q̂

q1

[Â3Â4] [Â2Â3] q1

 Q̂

We see that the coefficients ​can thus be       

computed element-wise. The idea is that many of       

the elements do not need to be       

computed, since it is known that they vanish as         

soon as the intersection of the supports of ​and        

​does not meet . This vastly reduces the        

Ai,j

Ai,j(Qk)

fhj
fhj Qk



symmetric and positive definite whatever the      

value of the density ​ ​. We solve this linear system          

with iterative method by considering that is the        

control is so fixed to find values of potential field          

​at the nodes of our elliptic problem. There are         

several iterative techniques designed to solve such       

matrices, and the method used here is method        

ICCG (Incomplete Cholesky Conjugate Gradient).     

It is based principally on preconditioning of       

factorisation of linear system Cholesky. The      

advantage to use the numerical method ICCG is to         

compute parameters include in the algorithm      

without any estimation. We use generalized mesh       

whose nodes are not aligned with the flow        

direction. 

IV. MESHING THE PHYSICAL DOMAIN 
 

 

 

 

 

 

 
 

Figure 2: ​Identification of meshing regions. 

When considering transonic flows over a wing,       

three regions can be identified: the boundary       

layer, the region around the shock, and the        

farfield. These regions are presented in Figure 2.        

The profile is extracted as a list of points. We          

show in Figure 3 the nodes in the standardized         

profile that are less than 2500. Noticing that an         

airfoil
 
is

 
divided

 
into

 
three

 
main

 
parts:

 

● The first part of the leading edge profile has a          

relatively high curvature. It is needed to have        

enough high discretization, it is not done only        

for the leading edge. However, the well       

discretization of break point is also necessary. 

● The second part consists of the middle of the         

profile to the upper and lower part. We        

simulate flow field in transonic regime, so it        

must have a grid with points closer in order to          

capture the shock with accuracy. Indeed, the       

discretization being done on the skin will       

spread to the limits of the field. 

● Finally, we arrive at the trailing edge. The        

mesh should tighten over the discretization in       

order to predict the passage of the flow in this          

section.
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Leading edge refinement Trailing edge refinement

Mesh released

Mesh of boundary layer

ρ

φ

φt

φt

φ

computer load. Likewise, the right-hand side of       

the linear system can be written as: 

 

(31) 

 

Solve the system (8) is equivalent to solve the         

following linear system given by (17). The       

formulation of the FE approach give us a linear         

system of equations with dimension ​N ​× ​N​. This         

linear system shows that the matrix ​A ​is        

li =
Nh∑
k=1

li(Qk).

We mesh around the initial profile in order to         

build a new exterior mesh. From this profile, an         

automatic meshing is built with grid that size is         

. The new mesh is generated with form        im × jm

limit of many sequences of ​. The convergence         
φt

that takes ​C ​topology to surround the wing, and to          

better capture the wake of this mesh. The shape of          

the mesh was expanded from the cord and a         

widening of the trailing edge to infinity. 
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Figure 3: ​Profile of a given data. 

The meshing zones for the two cases are        

presented in the following pictures of Figure 4.        

The flow around the profile is fairly simple. We         

are dealing with a 2D transonic case, thus        

develops a shock on the upper surface of the         

profile. Under these conditions, the only      

production of the trail is through the shock. The         

mesh is distinguished by two types parabolic and        

hyperbolic, the first is shown in the left picture of          

Figure 5, and the second is shown in the right          

picture of Figure 6. The hyperbolic mesh is very         

different from parabolic mesh. The first has       

specifically curvature almost in the form of a        

circle. Hyperbolic mesh is also aligned in       

comparison with the parabolic. 

The generation of mesh meets all requirements of        

the flow fluid inviscid and anticipates the meshing        

of boundary layer. We deal the profile that has         

icing form. This case is very interesting because        

we introduce the tip form what explain the tighten         

discretization of some zones. 

The nodes have to be distributed on perpendicular        

on profile. If we are placed near from the         

boundary, then the mesh evolves from small node        

near the profile to the big node. Then we need to           

improve the geometry in order to adapt this mesh.         

The node step evolves in length direction. On the         

contrary in width direction, it does not evolve        

because this boundary is considered the near part        

of trailing edge. Near of the trailing edge, the         

nodes should be small. The flare of mesh is         

realized in wake in order to have node near from          

boundary and the ratio of length and width is not          

large. Its target is to anticipate putting up the         

mesh of the boundary layer and wake in order to          

have no numerical stability problem. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 4: ​Meshing around profile given in Figure 3. The left picture presentes a parabolic mesh. The 

right picture presentes a zoom of the left picture to get a hyperbolic mesh 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 5: ​ Parabolic mesh around the profile. ​Figure 6: ​Hyperbolic mesh around the profile. 
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V. THE REENGINEERING OF THE FLOW 
FIELD COMPUTATION MODULE 

Much of the programming prior to 1970 was what         

is now considered unstructured which is a huge        

amount of Fortran code that is too valuable to         

throw away, but very expensive to maintain. It is         

often synonymous with the pejorative term      

spaghetti code, meaning source code with a       

complex and tangled control structure. The need       

for quality assurance is underlined by research       

such as that due to Les Hatton [5]. Hatton has          

analysed a large number of commercial scientific       

software packages written in Fortran 77. The       

Fortran 77 codes had an average of 12 statically         

detectable faults per 1000 executable statements.      

Another investigation of software quality in      

Fortran codes has been made by Hopkins [8]. He         

has investigated how the quality metrics of some        

well known public domain packages and      

published algorithms have changed with time. 

There are many references that investigate the       

re-enginering physical codes in Fortran. In [6],       

the author proposes the use of software       

engineering metrics as an additional tool for the        

enchancement of quality in climate models. 

We start to reengineer the flow field computation        

module by suppressing the command goto which       

is a statement found in many computer       

programming languages as like Basic and Fortran.       

It is a combination of the English words go and to.           

It performs a one-way transfer of control to        

another line of code; in contrast a function call         

normally returns control. The jumped-to locations      

are usually identified using labels, though some       

languages use line numbers. This command goto       

is a form of branch or jump statement. It has not           

been appreciated for modern programming since      

revolution of structured programming. In order to       

clarify and optimize efficiently the module, we will        

use classical structured programming.    

Consequently, we use structures such as      

conditional jumps (if ​. . . ​then ​. . . ​else) or loops             

(for, while, etc) in order to integrate the modern         

programming language. 

 

For repeated execution of similar things, loops are        

used in the module with label such as do-loop         

presented in Listing 1. This standard loop is        

considered archaic in Fortran 77. They are       

modified to another without label depending on       

situation. The simple situation is given by       

Listing 2. 

The common statement provides the combination      

of memory areas that can be shared by different         

program units (functions procedures). Command     

common is replaced by passing by arguments       

between procedures. In what to follows, we use        

dynamic allocation of tables. Indeed, the most of        

static tables are replaced with dynamic allocation       

to increase genericity of the module.      

Consequently, it fits the dimensions of any       

dimension mesh. In fact, the initial code could        

provide only meshes with predefined dimensions      

(and therefore not modifiable). The statements      

common are specification statements and have a       

general form defined in Listing 3. Here,       

blockname is a common block name. Variables       

var1 and var2 are a list of variable names, array          

names, and array declarators. To Suppress      

command common in this example, we use       

procedure such as Subroutine that name takes       

blockname, and arguments are var1 and var2.       

This example of reengineering code is presented       

in Listing 4. 

Next, we suppress files that unnecessary output       

and binary temporary files. The initial code in        

Fortran 77 uses the large output files, which are         

most often unnecessary. For this reason, we are        

reengineering the code in order to conserve only        

useful files. The binary files defines the file that         

could be stocked all information that are       

presented in memory. Some variables of the       

module are not passed by routine’s arguments.       

They are not saved in command common: these        

variables are directly in intermediate binary files.       

Consequently, the output files are been replaced       

by defining new variables with passing arguments 

between the routines in order to respect acutal        

programming standard. 
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All routines of reading/writing files are grouped in        

commune library in order to homogenize the       

functionality of the module. Now we justify how        

implicit declarations are suppressed (see Listing      

5). We declare explicitly all variables in order to         

prevent errors. That whay we use instruction       

implicit none in every blocs of declaration       

(see Listing 6). This instruction obligates the       

programmer to declare explicitly each variable. 

 

 

 

Listing 1: Loops with standard format in Fortran 77   Listing 2: Loops without label in Fortran 90 

 

Listing 3: Implicit declarations in Fortran 77      Listing 4: Explicit declarations in Fortran 90 

 

Listing 5: Implicit declarations in Fortran 77     Listing 6: Explicit declarations in Fortran 90 

The numerical module provides many physical      

results in order to give us the boundary layer         

properties (heat transfert coefficient and recovery      

temperature). These results are presented in      

Tecplot format. In particulary, the Figure 7 shows        

the density result. The red regions located at        

leading edge and at places near from the layer         

boundary have the large value of density. There        

exist low values of density in upper part. The         

average values of density are presented in green        

color. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7:​ Density gaz around the profile. 
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1 DO 1 I1 = IV1 , FV1 , S1
2 insrtuctions
3 DO 2 I2 = IV2 , FV2 , S2
4 instructions
5 2 CONTINUE
6 DO 3 I3 = IV3 , FV3 , S3
7 instructions
8 3 CONTINUE
9 1 CONTINUE

1 DO 1 I1 = IV1 , FV1 , S1
2 insrtuctions
3 DO 2 I2 = IV2 , FV2 , S2
4 instructions
5 END DO
6 DO 3 I3 = IV3 , FV3 , S3
7 instructions
8 END DO
9 END DO

1 common / blockname /var1 ,var2 1 Subroutine blockname (var1 ,var2)

1 implicit real(a-h,o-z) 1 implicit none
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