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ABSTRACT 

This paper presents the modelling and free       

vibration analysis of two elastically coupled      

plates in with general boundary conditions. Both       

out of plane and in-plane vibration are       

considered in in the present analysis thus making        

the methodology suitable for analysis of high       

frequency in-plane vibration along with low      

frequency bending characteristics. The plate     

displacement function has been derived using      

combination of trial beam functions , expressed       

as modified Fourier cosine series, in x and y         

direction. The modification of Fourier series is       

achieved by adding supplementary function to      

the basic Fourier series which has resulted in        

faster convergence rate of the series expansion.       

Finally, Rayleigh-Ritz method is employed to the       

Lagrangian function to derive the frequency      

matrix. The accuracy and effectiveness of the       

proposed method are validated through     

numerical examples and comparison with     

analytical and FEM results presented in      

literature. 

Keywords: L-shape plates, elastic coupling, general      

boundary conditions, modified fourier cosine     

series, rayleigh-ritz method. 

I. INTRODUCTION 

Coupled two plate structure is an integral part of         

many engineering structure, mechanical system or      

dynamic mechanisms. These elements play a vital       

role in the design of marine, aerospace,       

mechanical and automobile structures. These     

structures also play a vital role in design of         

defence systems like armoured structures, ships      

hull structure, missile launchers etc. Hence,      

determination of the vibration characteristics of      

plate structures becomes crucial towards their      

anti-resonance design with respect to the      

external/internal excitation frequencies. In the     

existing literature of research, various analytical      

methods have been presented by researchers on       

vibration analysis of coupled plate system. Few of        

the earliest investigations have been carried out       

on structural power transmission and     

transmission of bending waves in coupled plate       

systems using the receptance method [1-3],      

Statistical Energy Analysis [4-5], mobility     

approach [6-7]. Bercin [8] used the Dynamic       

stiffness method and presented the effect of       

in-plane vibrations on energy flow in coupled       

plates. Travelling wave concept combined with      

modal solution approach was used by      

Kessissoglou [9] to analyse vibration     

characteristics of L shaped plates. Wang et al. [10]         

presented the substructure approach to study the       

vibration characteristics and power transmission     

in L-shaped plates. All the above studies were        

carried out on classical (ideal) boundary and       

coupling conditions. Modelling of real engineering      

structures do not exhibit ideal conditions at       

boundary and coupling junctions and exhibit some       

amount of relative linear and rotational motion at        

the boundary and coupled junctions. Hence      

modelling and analysis of structures with general       

boundary and coupling conditions is more of       

practical significance. One such method is to       

represent these non classical boundary conditions      
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incorporating elastic edge restraints using     

translational and rotational springs. Few of the       
existing literatures to have adopted these      

boundary conditions on coupled plate systems and       

undertaken analysis based on Fourier series      

expansion method are by Du et. al [11], Xu et.al          

[12], Chen et.al [13] and Shi et.al [14]. All the          

presented publications have used displacement     

assumption of Fourier series modified with an       

auxillary function. But there assumption of      

displacement function has resulted in a very large        

frequency matrix with many interrelated     

conditions for computation. This paper presents a       

simplified but computationally efficient modified     

Fourier series representation of displacement     

function to analyse the vibration characteristics of       

two coupled plate system. Four coupling      

formations have been considered i.e -90​o      

(L shaped), -135​o​, -175​o (very low angle coupling)        

and -180​o (flat coupled plate). The presented       

methodology has resulted in significant reduction      

in the size of frequency matrix which in turn has          

led to faster computation of numerical results.       

Application of Rayleigh-Ritz proceedure to the      

Lagrangian function has been utilised to calculate       

the coefficients of the modified Fourier series. The        

effect of varying coupling conditions on natural       

frequency and mode shapes are investigated.      

Further, the correctness and accuracy of the       

method has been established by comparing the       

generated results with results presented in an       

earlier publication. 

Such analysis is useful for prediction of dynamic        

response of plate structures with general boundary       

and coupling conditions. The methodology can be       

useful towards prediction of any variation of end        

supports and coupling junctions while in      

operation. 

II. THEORETICAL FORMULATIONS 

2.1  Description of the model 

The Analytical models for the coupled two plates        

structure being investigated are composed of two       

elastic plates as shown in Fig.1. The boundary        

conditions at each uncoupled boundary has been       

represented as general condition using a linear       

spring (​K​
Tbend​) and torsional spring (​K​

Rbend​) for       

bending displacements and two linear springs (​K​
ni

       

and ​K​
ti​) in the x-y plane for in plane         

displacements. Similarly, at the coupling junction,      

four types of uniform coupling spring are       

introduced to completely model the coupling      

effect i.e one linear (​K​
CTb​) and torsion spring        

(​K​
CRb​) for bending restraint and two linear springs        

(​K​
Cni

​and ​K​
Cti​) for longitudinal restraints. θ is the         

coupling angle of coupled plates structure. Thus,       

any variation in support conditions can be easily        

achieved in terms of change in rotational and/or        

linear spring stiffness’s at the boundaries/      

coupling junction. Further, the boundary     

conditions can be made ideal by taking infinite or         

zero values of spring stiffness’s. Any finite value of         

stiffness would lead to a non-ideal boundary/       

coupling condition. 

The displacements of the elastic plates with       

respect to this coordinate system are described by        

u​, ​v ​and ​w ​in the x, y and z directions,           

respectively. The coupling junction is taken as       

x​
1​=0 and ​x​

2​=0. The right hand coordinate system        

has been employed throughout the analysis. 
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(1) 

III. THEORETICAL ANALYSIS FOR PLATE 
BENDING AND IN-PLANE VIBRATIONS 

The theoretical formaulation for bending and      

in-plane vibration of plates has been presented for        

Plate 1. Plate 2 will follow the same derivation         

with coordinate system ​x​
2​,y​2​,z​2​, plate dimensions      

a​
2​, b​2​ and respective material properties. 

3.1 Energy Equation for Plate Bending and             
In-plane Vibrations 

The Lagrangian equation for coupled plate system       

for free vibration can be expressed as 

L ​= ​V ​− ​T                                                                     ​(2) 

(3)
 

 

(4) 

 

The expression for total potential energy includes       

energy associated with plate displacement as well       

as the total strain energies associated with the        

boundary springs. V​
12
​
coupling

represents the strain       

energy associated with the coupling springs at the        

plate junction. 

For Plate 1 the expressions for ​V​
1

, ​T​
1

and ​V​
12
​
coupling

            

can be further expanded as  

 

 

 

(5) 

The coordinate system ​x​
2​,y​2​,z​2 ​has been obtained       

by rotating ​x​
1​,y​1 z​

1
​about ​Y​

1
​axis by –θ as dictated           

by right hand coordinate system. The relation       

between these two coordinate system can be       

derived as: 

 

 

where ​L ​is the Lagrangian operator, ​V ​and ​T ​are          

the total potential and kinetic energy of the        

coupled plate system. According to the      

assumption of thin plate theory, the total potential        

and kinetic energy of the coupled plate system can         

be further expressed as 
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Figure 1:​ Coupled Two Plate System. 
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(6) 

 

 

 

(7) 

 

 

 (8) 

 

 

 

(9) 

 

 

where w​
1

is the transverse displacement in the z​
1

​

-direction, u​
1

and v ​
1

are the in-plane displacements in                 

the x​
1​- and  y​

1​- direction,  respectively; ω is  the angular  frequency,  

υ​
1​, ρ​

1
and h​

1
denote, respectively, the flexural rigidity, extensional rigidity, Poisson’s ratio, mass density               

and the thickness of plates. E​
1​ denotes the Young’s Modulus of plate 1. 

V​
12

​
coupling

expression has been derived using displacement transformation of coordinates x​
2

y​
2

z​
2

on               

coordinate system x​
1​ y​1​z​1​. 

 

(10) 

 
 

3.2 Fourier series expression for Displacement           
Function 

The admissible functions for ​w​, ​u ​and ​v ​play a very           

critical role in Rayleigh Ritz formulation. The       

admissible displacement function of a plate is       

often taken as a product of beam displacement        

function in x,y and z direction having the same         

boundary condition in x and y direction. Hence,        

the displacements w​
1

u​
1

and v​
1

of Plate 1can be          

expressed as 

 

(11) 

 

(12) 

 

(13) 

 

where w​
1​(x), u​

1​(x) and v​
1​(x) are the beam        

displacement functions of x​
1

and w​
1​(y), u​

1​(y) and        

v​
1​(y) are the beam displacement functions in y​

1
        

direction. 

The individual beam displacement functions have      

now been assumed as a Fourier cosine series        

which has been modified by addition of an        

auxiliary function such that the possible      

discontinuities associated with Fourier cosine     

series are totally eliminated. 
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The assumed Fourier cosine series representation of the beam displacements in terms of x​
1

and y​
1

are                 

given as: 

 
 

(14) 

 
 

(15) 

 
 

(16) 

 

The auxillary functions q​
w1x1​, q​

u1x1
and q​

v1x1
have been derived in terms of known parameters of the plate                  

using the condition for eliminating the discontinuities associated with Fourier cosine series in state of               

bending and in-plane vibration. 

The condition of continuity of cosine series for bending and in-plane vibration is expressed as 

(17)  

 

(18)  

 

(19) 

 

Considering the requirement of least derivable function and the boundary conditions for beam in              

bending and in-plane state, the auxiliary functions chosen for the beam displacements are chosen as               

trigonometric functions given by 

 

(20)  

 

(21) 

  

(22) 

 

The second part of the derivation of the auxillary function deals with application of boundary               

conditions for bending and in-plane vibration to the individual beam function. The associated boundary              

condition for bending for a beam is given as: 

 

(23) 

  

(24) 
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The same can be replicated for y​
1​ with respective boundary elastic spring stiffnesses. 

The boundary conditions for in-plane vibration for a beam in terms of x​
1​ are given by the expressions: 

 
(25) 

 

 

 (26) 

 

  

(27) 

  

 

(28) 

 

Using Equations (17-26), the beam displacement function in x​
1

direction for bending and in- plane               

vibration is derived as 

 

(29) 

 

  

(30) 

   

(31) 

 

The expressions for the terms of one of the derived          

expression (Eq.(30)) is placed at ​Appendix ‘A’​.       

For the beam displacement functions in y​
1

       

direction, we need to replace all x​
1

terms and         

stiffness’s of the beam in Eq.(29)- Eq.(31) with        

terms associated in y​
1

direction. This will generate        

expressions for w​
1​(y​

1​), u​
1​(y​

1​) and v​
1​(y​

1​). 

Hence using beam displacement functions in      

Eq.(11)-Eq(13), the plate displacement function for      

Plate 1 and Plate 2 can be expressed as: 

 

(32) 

 

(33) 

 
(34) 

3.3  Solution for Natural Frequency 

Substituting Eq.(32-34) in Eq.(3) and Eq.(4) will       

give the energy expressions for Plate 1 and 2.         

There after substitution of the energy equations       

into Eq.(2) and minimising the Lagrangian with       

respect to all unknown Fourier coefficients of the        

displacement functions equal to zero, we will get a         

group of linear equations which can be expressed        

in matrix form as 

 

(35) 

 

For a two plate system with six unknown Fourier         

coefficients, the ​K ​and ​M ​matrix will have a size of           

6x6 with each element of the matrix having a size          

defined by series truncation term m=M and n=N.        

The expression for the terms of the first row of Eq.           

(35) is given at ​Appendix ‘B’​. The general        

formation of Eq.(35) is given as: 
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(36) 

 

 

 

 

(37) 

 

 

  

(38) 

 
  

 (39) 

 
In the Frequency equation matrix represented by       

Eq. (35) the stiffness values have been modified as         

defined by the boundary conditions: 

and -180​0 (flat coupled plate) as defined by the         

coordinate system. The material properties and      

plate thickness (h) of both the plates have been         

assumed to be same and have values given as: 

Plate thickness (h​
1​=h​

2​)=0.008m  

E=2.16x1011 N/m​2 
υ=0.28 

ρ=7800 kg/m​3 

The plate dimensions taken are a1=1.4m, b1=1.2m,       

a2=1m and b2=1.2m with coupled edge having the        

same dimension. The properties and dimensions      

have been kept same as taken by Du et.al [11] for           

the purpose of validation of results. The boundary        

conditions for the two plates have been set to near          

ideal simply supported for bending and clamped       

for inplane vibration modes and the analysis has        

been carried out to present the effect of variation         

of coupling stiffness and coupling angles on the        

vibration characteristics of the coupled system.      

The boundary conditions and plate angle      

configurations are presented in Fig. 2. 
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 (40) 

IV. RESULTS AND DISCUSSIONS 

The numerical analysis has been carried out for        

plate configurations coupled at -90​o​, -135​0​, -175​0       
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Figure 2: ​Boundary Condition and Coupling Angles (a) Boundary Condition 

(b) Coupling Angle=-90​0​ (c) Coupling Angle=-175​0​ (d) Coupling Angle=-180​0 

59



4.1 Validation and Convergence of Natural           
Frequency and corresponding Modes 

The numerical results have been generated for the        

L shaped coupled plate configuration and      

validated with similar results obtained by Du et.al        

[11]. The boundary conditions and coupling edge       

have been taken as mentioned above. The       

coupling spring stiffness’s used for analysis are       

K​
CRb ​=1​e​4, ​K​

TRb ​=1​e​4, ​K​
Cni ​=1​e​5, ​K​

Cni ​=1​e​4. The
 

 
 

 
 

 
 

  

convergence and validation results for first four       

natural frequency for an L shaped coupled plate        

have been presented for different truncation      

schemes m=0,1,2...M and n=1,2,3..N in Table 1. 

Table 1:​ Covergence and Validation of Natural Frequency 

Mode No   Natural Frequency (Hz)   

 Present Method  Du et.al [11]  

 M=N=1 M=N=2 M=N=4 M=N=8 M=N=9 FEM 

1 16.151 16.147 16.243 16.154 16.147 16.109 

2 20.233 20.219 20.573 20.444 20.438 20.389 

3 33.980 33.837 34.065 33.713 33.710 33.553 

4 48.765 48.390 52.6 52.139 52.136 51.934 

 

From Table 1, it can be seen that the results          

compare very well and accurate with the analytical        

and FEM results obtained by Du.et.al [11]. Also,        

the present method is far more efficient in        

convergence hence speed of calculation in      

comparison to the method used by Du. Et.al [11].         

This efficiency is due to generation of a very small          

Frequency Matrix size (6x6) in the presented       

method as compared to the one generated in        

literature (38x38) being referred. For all our       

further analysis, truncation of Fourier expansion      

series at M,N=2 has been utilised. The       

corresponding modes for a coupled L shaped plate        

structure is presented in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

From Fig. 3, it can be seen that because of          

consideration of elastic coupling, the coupling at       

the junction in the modes are no longer        

continuous and have a gap in comparison to rigid         

coupling mode. This is mainly because of soft        

coupling at the junction which is far less than the          

rigidity of the structure. This coupling condition       

results in a weak coupling between in- plane and         

out-of plane vibration thus resulting junction gap. 
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Figure 3:​ ​Mode Shapes for L shaped Coupled Plate with Coupling Spring Stiffness’s K​
CRb ​= 1e4, K​

TRb ​= 

1e4, K​
Cni ​= 1e5, K​

Cni ​= 1e4 (a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 



 

 

Table 2:​ Variation of Natural Frequency of an L Shaped Coupled Plate with Simply supported 

Boundaries and Clamped Coupling Configuration 

K ​
CRb 

 Natural Frequency (Hz)
 

 

Mode 1 
Mode 2 Mode 3 

Mode 4 

10​10 994.93 1101.86 1352.45 1651.72 

10​7 175.81 186.44 1478.06 1558.65 

10​6 61.051 87.205 1489.5 1551.27 

10​4 24.7309 34.034 66.033 75.752 

10​2 24.387 34.742 65.897 76.079 

10 24.384 34.749 65.896 76.082 

0 24.383 34.745 65.895 76.083 

 

It can be seen from Table 2 that for extremely high           

values of coupling spring stiffness (>10​4​), the L        

shaped coupled plate system behaves as a rigid        

body configuration exhibiting very high values of       

natural frequency. Between K=10​4 to 0, there is a         

very marginal decrease in the first natural       

frequency and marginal increase in 2​nd​
, 3​rd

and 4​th         

natural frequency. Thus K​
CRb​=10​4 sets the upper       

limit for a rigid coupling configuration. The       

corresponding modes for the first four natural       

frequencies for K = 10​4​ is shown in Fig. 4. 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 

4.2 Variation of Natural Frequency with Coupling             
Rotational Spring Stiffness (K​CRB​)

 

Further, analysis has been undertaken to present       

the variation in natural frequency of an L shaped         

coupled plate system having simply supported      

 

 

boundaries and fully clamped junction (all      

junction stiffness’s set to 10​10​
) while reducing the        

rotational spring stiffness at junction (K​
CRb​)      

gradually in steps to 0.  
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Figure 4: ​ Mode Shapes for L shaped Coupled  Plate  with Rigid Coupling  stifness’s K​
CRb ​= 1e4, K​

TRb ​= 

1e10, K​
Cni ​= 1e10, K​

Cni ​= 1e10 (a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 4 
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It can be observed from the Mode shapes in Fig. 4           

that for rigid coupling configuration, the      

discontinuities at the coupling junction are no       

longer existing. Also, the vibration characteristics      

tend to appear on the entire plate structure. 

4.2 Variation of Natural Frequency with Coupling             
Angle 

To analyse the variation of natural frequency and        

mode shapes with varying angles of coupling, a        

soft spring coupling junction has been utilised       

with the spring stiffness’s defined as K​
CRb ​=1e4,      

 
 

K​
TRb ​=1e4, K​

Cni ​=1e5, K​
Cni ​=1e4. Numerical results

 
 

 
 

 
   

have been obtained for coupling angles -180​o​,       

-175​o​, -135​o and -90​o​. The natural frequency       

obtained are presented in Table 3 and the        

corresponding comparison of the first mode in all        

04 cases is presented in  Fig. 5. 

 

Table 3:​ Variation of Natural Frequency with Coupling Angle with Soft Coupling Junction 

 

Coupling Angle 
 Natural Frequency (Hz)

 

 
Mode 1 

Mode 2 Mode 3 
Mode 4 

-180​o 16.15 17.625 33.999 47.273 

-175​o 16.15 17.648 33.999 47.284  

-135​o 16.11 19.022 33.948 48.048 

-90
o

16.148 20.219 33.837 48.390
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Figure 5: Comparison of First Mode with varying Coupling Angles for a coupled two Plate system                 

having spring stiffness’s representing a soft coupling junction (a) Coupling Angle=-180​o (b) Coupling             

Angle=-175​o​ (c) Coupling Angle=-135​o​ (d) Coupling Angle=-90​o 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It can be inferred from Table 2 and Fig. 5 that           

although there is a marginal variation of natural        

frequency with variation of coupling angle, but the        

corresponding mode shape exhibits appreciable     

variation. This happens due to the interaction of        

bending and in-plane waves of the two plates        

interacting at different angles at the coupling       

junction . Further, in a flat coupled plate        

configuration the weak coupling junctions allows      

the two plates to move independently of each        

other. 

V.    CONCLUSION 

(a) The inclusion of a new and simple auxiliary        

function in the assumed displacement     

equation for in-plane vibration of square      

plate has resulted in an highly accurate and        

rapid convergence of solution (frequency     

parameter) using the Rayleigh-Ritz approach.     

The numbers of terms in the frequency matrix

 

(b) The examples presented for combination of      

general coupling conditions of the coupled      

plate system have clearly brought out the       

impact of variation of junction stiffness and       

coupling angle on the vibrational     

characteristics (variation in frequency    

parameter) of the coupled plate system. The       

distinctive nature of modes with even slight       

variation of natural frequencies have led to       

the conclusion that coupled plate modes can       

be an effective tool to monitor and variation        

of the coupling junction properties. It is       

envisaged that the proposed methodology and      

the results can be useful as a reference for         

future research works involving more     

complex coupled structures with higher     

number of plates. 

 

 

 

        

have greatly reduced thus greatly decreasing      

the computational time and accuracy. 
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