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Reliability of the Bond Graph Approach for
Robust Diagnosis of a Newborn Incubator

System

ABSTRACT
This article aims to solve a problem of research

with a thermal system (incubator) to the graph

of pseudo-connections. The method we develop is

based on the determination of the resolution on

the model ARR-BGM (Analytical Redundant

Relationships Bond Graph). These relationships

serve to detect and isolate faults in the various

elements of the system, but also to locate the

industrial system. We introduced defects in the

heat source, leaks in the incubators and a leak in

the incubator door; these defects were

transferred by thermal transfer to negative

values. The results of simulation, the

effectiveness of proposed method to detect and

locate defects, in addition, to analyze the

robustness of the Incubator to defects, we

imported the graphical link model as linear

fractional transformations (BG-LFT). This

makes it possible to verify the reliability of the

approach of the link graphs in terms of

sensitivity and detectability of defects that may

appear in an industrial system.

Keywords: robust diagnosis, bond graph

approach, linear fractional transformations,

analytical redundancy relations, incubator.
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I. INTRODUCTION

The main objective of the automation engineer is

to determine control algorithms of physical

systems that are often of different natures,

electrical, mechanical, hydraulic, thermal, etc.

This objective will not be obtained if the system

modeling is not validated which is the first task.

The model describing physical reality is usually

obtained on the basis of an idealized description

of the system and only dominant phenomena are

often taken into account given the complexity and

diversification of the system [1-4].

In this article we chose the incubator not only for

the complexity of the system but also the

importance of this system in the lives of human

beings. An incubator is a protected heated place,

which allows the development and monitoring of

certain newborns. It is an apparatus intended to

allow the normal development of children born

before term (premature), or fragile newborns

[5-10].

The incubators consist of an electrical part

(electrical heating resistance) and a thermal part

(enclosure receiving the child). Several elements

of the incubator can be a source of contamination

of the environment of the newborn. Indeed, each

part constituting the incubator has specificities

for cleaning, disinfection and maintenance. In

addition, disinfection is a priority of neonatology
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units [11], but maintenance (sealing problem,

problem of thermal insufficiency or overheating)

is a task for technicians [12-15]. To facilitate the

task of the technicians, it is necessary to find a

reliable and generous approach to model and

analyze the defects that may appear during

operation this incubator. This reliability and

generosity can be found in several approaches

such as Petri nets [16-24] and bond graph

[25-30].

Most authors have limited their research to a

mathematical model to simulate the different

heat exchanges in the incubator or for control

purposes..: Ultman [31] developed a simulator of

neonatal energy transfer to provide a convenient

yet precise comparison of sensible heat loss in

incubators, Le BIanc [32] described the

fundamental equations involved in thermal

exchange between infants and their environment.

Simon [33] developed a Theoretical Model of

Infant Incubator Dynamics. Pauline Décima[34]

developed a Mathematical modeling of

thermoregulation processes for premature infants

in closed convectively heated incubators and for

calculating thermo neutrality in closed incubators

for premature newborns, Zermani [35] developed

a simulation model of infant-incubator system

with decoupling predictive controller, Andrés

Fraguela [36] Proposed a model of heat exchange

and energy balance in premature newborns

during the first hours of life in a closed incubator.

In addition, a control problem was proposed and

solved in order to maintain thermal stability of

premature. Stéphane Delanaud [37] proposed a

New Software for assessing the impact of

humidity on the optimal incubator air

temperature.

The bond graph approach is a very effective

approach for this kind of system, since it is

multidisciplinary and was initially used for

modeling physical systems. The usual approach of

the users of this approach is to consider the bond

graph model as a knowledge model for the

simulation of dynamic systems. The idea of ​​using

a single representation (the bond graph) for the

modeling, analysis and synthesis of control laws

by exploiting causality has been developed in this

field [38, 40].

Engr Hassan Javed and Asif Mahmood Mughal

[41] have developed a flow chart model for an

incubator that only takes into account the heating

part modeled as heating capacity, then the heat

flux in the chamber is modeled as a flux source,

but they neglected the thermal capacity of the

external environment and the thermal capacity of

the mattress. In this paper we propose a new

approach of modeling by the bond graph

approach of the incubator taking into account the

thermal capacities of the environment as well as

the mattress.

The purpose of this article is also to design a

robust diagnostic system based on a model using

a single tool: the link graph. Methodologically, the

work consists of automating model generation

and failure indicator procedures in the form of

fractional linear transformations (LFTs) and

interchangeably for integration into the

supervisory system. At the industrial level, the

results obtained were applied to real installations:

incubator.

II. MATHEMATICAL MODEL OF THE
INCUBATOR

The incubator can be described as a reaction

system consisting of two large dynamic parts: the

climate inside the lodge and the heating system.

The heat, humidity and oxygen at the thermostat

outlet are defined as input variables of the

incubator and the climate parameters tested by

the newborn are the output variables. The

temperature of the box, the temperature of the

walls and the windows intended for medical care,

the incubator consists of three main parts:

● The ambient air in the lodge

● The mattress;

● The walls.

2.1 Modeling the Thermostat

To model this part of the incubator, consider the

following simplifying measures:
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● The thermostat is assumed to be

homogeneous with constant characteristics

such as specific heat

● The temperature distribution is uniform,

● The specific heat Cpm is equal to that of the

normal air.

The temperature of the air coming from the

thermostat can be written as follows:

(1)

2.2 The Ambient Air in the Lodge

The ambient air of the incubator box exchanges

heat with all the elements of the Child-incubator

system mainly by convection, but also by mass

transfer during the Breathing and also by

evaporation. In our case we consider the

incubator without baby. During a period dt, the

thermal equilibrium of the ambient air of the box

can be determined according to the following

equation:

(2)

Where Ma denotes the air mass in the box and Cpa

its thermal capacity.

The ambient air of the box gives heat to the walls

of the incubator by convection. This energy is

determined by the following equation:

  

(3)

Where Aw is the surface of the walls in contact

with the air. The convective transfer coefficient

hacv depends mainly on the shape of the

incubator, the ventilation in the box and the

number of Nusselt and Reynold.

The walls of the incubator, made of transparent

Plexiglas, have six portholes and a window

provided for care. The walls consist of a single

homogeneous layer thw thickness equal to 6mm

and the heat distribution is uniform on the inner

surface and external.

The thermal equilibrium during a time dt can be

written in the following way:

   

(5)

Where Mw the total mass of plexiglass walls and

Cpw its thermal capacity.

The inner surface of the incubator wall receives

convective heat loss from the ambient air in the

incubator Qacv.

On the other hand, the walls of the incubator

exchange with the neonatology room of radiation

and convection energy. The convective heat

transfer is determined by the equation below:

  
(6)

The heat transfer by radiation is calculated by the

following relation:

  

pmR.C

)haThaiT(

dt
hadT −

=

                 

paC.aM
matQacvQhtQ

dt
adT −−
=

2. 3 Thermal Balance of the Walls
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The mattress surface of the incubator not

occupied by the child also exchanges the energy

with the convective ambient air according to the

following equation:

(4)

Where Anet is the surface of the mattress in

contact with the air.

)
m

T
a

T.(
net

A.
acv

h
mat

Q −=

(7)]4)15.273eT(4)15.273wT[(w..wtA0rQ +−+= ξδ

2. 4 Mattress Modeling

The mattress of the incubator exchanges heat by

conduction of the ambient air and skin

conduction. In the case of an empty incubator the

thermal equilibrium of the mattress can then be

written in the same way next:

(8)

pmC.mM
icQmatQ

dt
mdT −

=

Knowing that the two plates of the support that

carries the mattress are thin, and the surface of

small contact, the transfer of heat by conduction
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of the mattress to the incubator, Qic, is not

considerable and can be ignored.

III. INDUSTRIAL SYSTEM BY BOND GRAPH
MODELS

The bond graph formality was introduced by H.

Paynter in 1961 [42] and formalized by Karnopp

and Rosenberg in 1975 [43]. The bond graph tool

is now used regularly in a few companies,

particularly in the automotive industry (PSA,

Renault, Ford, Toyota, General Motors, etc.). This

method illustrates energy transfers in the system

using power bonds. A power link is symbolized by

a half arrow, whose orientation indicates the

direction of power transfer. Thus, figure 1 shows

the power transfer from subsystem S1 to

subsystem S2 [44-46]. One of the fundamental

characteristics of the bond graph formalism is its

unifying aspect, whatever the physical domain of

application (electrical, mechanical, hydraulic,

chemical…). We can visualize energy transfers in

multi-domain systems using the generalized

variables presented in the next section. The

notion of power is described by the following

relation:

         
(9)

This equation illustrates energy transfers in the

system by using power bonds. A power link
4

is

symbolized by a half arrow, whose orientation

indicates the direction of power transfer. Thus,

figure 1 shows the power transfer from subsystem

S1 to subsystem S2.

Each power link carries two information’s

simultaneously: the effort and the flow (see figure

1). These are the generalized power variables

(their product being the transferred power).

Figure 1: Power link

IV. ROBUST DIAGNOSIS OF INDUSTRIAL
SYSTEM BY BOND GRAPH MODELS

Linear Fractional transformations (LFT) are

generic objects widely used in the modeling of

uncertain systems. The universality of fractional

linear transformations is reached seen that any

rational expression can be written in this form

[47-54]. This form of representation is very used

for the synthesis of control laws of uncertain

systems using the principle of μ-analysis. It

consists of separating the nominal part of a model

from its uncertain part, as shown in figure 2.

Figure 2:   Representation of the Fractional Linear

Transformations (LFT)

The nominal values are grouped together in an

augmented matrix denoted H, supposed to be

proper. The uncertainties whatever their types

(structured and unstructured parametric

uncertainties, modeling uncertainties, measure-

ment noises, etc.) are combined in a matrix Δ of

diagonal structure.

With:

S1 S2
e

f

H

∆

u y

w z

4.1. Construction of a BG-LFT Model

All industrial systems can be modeled by BG

model according to figure 3. Indeed, the input

signal is modeled by an effort source (Se) or a

flow source (Sf). The complete system is modeled

by resistive elements (R) and storage elements (I

or C), while the detectors are modeled by detector

elements (De or Df).

.
)t(f).t(e)t(P =          

x∈R
n
: System state vector;

u∈ R
m

: Vector grouping system control inputs;

y ∈ R
p
: Vector grouping the measured outputs

of the system;

w∈R
l

and z ∈ R
l
: Respectively include inputs

and auxiliary outputs. n, m, l and p are positive

integers.
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Figure 3: Industrial System Described by Bond Graphs

4.2. Bond Graph Element With Multiplicative Uncertainty

The introduction of a multiplicative uncertainty on e.g. element R in causality gives resistance:

(10)

With:

Unlike the force introduced by an additive

uncertainty with respect to the parameter

(equation (1)), the force provided by a

multiplicative uncertainty (equation (10)) is a

function of the force provided by the nominal

parameter. This is an important property for the

parametric identification step and the supervision

step.

4.3 Resistive Element With a Multiplicative
Uncertainty
The bond graph model equivalent mathematical

model of equation (2) is given in figure 4.

System

Outp Y(t)Inp U(t)

Storage elements

Cn, In

Junctions

0, 1, TF, GY

Dissipative elements

Rn

De

Df

Se

Sf

inceneneRneRf)R1(nRRe +=+=+= λλ

a) BG-LFT Model of an Element Resistance with Multiplicative Uncertainty, b) BG-LFT

Model of an Element Conductance Multiplicative Uncertainty

Figure 4:

R: R

eR fR

b)

1

fi fn

e

fR

0

-λ1/R

Df : Z1/R

f4

R: Rn

e1= eR

f1

MSf : w1/R

a)

R: R

eR fR

0

ei en

eR

fR

MSe:
 
wR

1

en

-λR

De: ZR

R: Rn

e1

f1= fR

with

● Rn : The nominal value of the element R;

● λR: The multiplicative uncertainty parameter;

● eR et fR : Represent respectively the effort and the flow in the element R ;

● en et einc : Respectively represent the effort made by the nominal setting and effort introduced by the

additive uncertainty.
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Figure 5: BG-LFT Model of an Element C in Derivative Causality With Uncertainty

● Parts C Integral Causality

The bond graph model equivalent mathematical model of equation (2) is given in figure 6.

Figure 6: a) BG-LFT Model of an Element C in Integral Causality Multiplicative Uncertainty

To determine the final model that fits the model of a physical system by the Bond Graph approach and

the Linear Fractional transformations model, we must integrate according to the following figure 7.

4.4 Storage Elements With a Multiplicative Uncertainty

● Parts C derived causality

The bond graph model equivalent mathematical model of equation (2) is given in figure 5.

C: C

eC fC

1

fi fn

eR

fR

0

-λC

Df : ZC

f4

C: Cn

e1= eC

f1

MSf : wC

0

ei en

eC

fC

MSe: w1/C

1

en

-λ1/C

De: Z1/C

C: Cn

eC

f1= fC

C: C

eC fC

with
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4. 5 Generation of Robust Residuals
To determine the residuals by the redundant

analytical relationship (ARR), the following steps

must be followed:

● 1
st

phase: Determining the derivative model;

● 2
nd

phase: Determining the graph model

using the LFT transform;

● 3
rd

phase: Determining the residual equations

for the two junctions (0 and 1).

For a 0-junction:

(11)

For a 1-junction:

(12)

With, einc and finc are unknown variables.

Moreover, the sum of flow sources and the sum of

the effort sources are respectively performed at

the level of the 0-junction and the 1-junction.

then determine the residue equations at their

junctions.

(13)

where

TFn and Gyn are nominal elements TF and GY.

Rn, Cn, and In are nominal elements R, C and I.

are uncertainties on the junction-related

items.

V. ANALYSIS OF RESIDUALS SENSITIVITY

The methods of analysis of sensitivity to

uncertainties and defects is proposed to improve

diagnostic performance has been developed in

recent years [68-70]. Indeed, these methods are

unfortunately not effective for the generation of

residues since they neglect the inter-parametric

correlation (the thresholds are often overvalued

and may differ). In addition, the Bond Graph tool

provides an effective solution to the problem of

parametric dependencies since the generation of

bond graph using (BG-LFT) automatically

separates the residuals and the adaptive

thresholds, this separation clearly showing the

energy contribution of the uncertainties to the

indicators of defects and facilitating their

assessments in the decision stage by calculating

the adaptive thresholds of normal operation. The

diagnostic performance is controlled by an

analysis of the sensitivity of the residues to

uncertainties and defects. To improve diagnostic

performance, determine the indices performance

(sensitivity index and detectability index) [55].

inc if Sf w+ +∑ ∑ ∑

                                   

inc ie Se w+ +∑ ∑ ∑

Figure 7: BG-LFT Model for Physical System

System

Storage elements

Cn, In

Junctions

0, 1, TF, GY

Dissipative elements

Rn

De

Df

Se

Sf

MSe

MSf

De*

Df*
Δ

Outp Y(t)Inp U(t)
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Figure 8: a) Compartments of the Closed Incubator System, b) Actual Image of the Incubator

Heater Air space

Mattress

Wall

5.1 Sensitivity Index (SI)

The index of parametric standardized sensitivity

explained the evaluation of the energy provided

by the residue uncertainty on each parameter by

comparing it with the total energy provided by all

uncertainties.

(14)

● di: Uncertainty on the parameters

● i : Basic element bond graph model (R, C, I,

TF and GY)

● wi: Modulated entry for Uncertainty in the

parameters

5.2 Detectability Index (DI)

The detectability index represents the difference

between the efforts (or streams) provided by

defects in absolute terms and that granted by all

the uncertainties in absolute value.

● Junction 1

(15)

● Junction 0

(16)

While defects detectability conditions will be:

● The defect is not detectable:

● The defect is detectable:

VI. MODELING AND SIMULATION RESULTS
OF INCUBATOR BY BOND GRAPH

MODELS

6.1 Incubator System

In this subsection, a simulation model for an

incubator was developed. Modeling relies mainly

on the conservation of heat and mass. The

proposed model is portioned into four distinct

homogeneous compartments; incubator air space,

heater, wall and mattress (Figure 8).

n

i
n d

w
SI =

dYeYDI sini +=

    dYfYDI sini +=
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★ The thermal capacity in the outside of the

incubator by a capacitance (C: Cw) in series

with a restriction (Rw);

★ The thermal capacity created by mattress by a

capacitance (C: Cm) in series with a restriction

(Rm);

★ The element (TF1) represents the thermal

transformation between the thermal source

and the internal volume of the incubator.

★ The element (TF2) represents the thermal

transformation between the thermal source

and the mattress.

★ The external environment is modeled by a

source of effort (Se: Tex) and restriction (R:

Rex).

Figure 9: Bond Graph model of Incubator Technology

6

7 9

11

13

8
10

12

14

TF: n1 1 02

C: Ca

De2

1
R: Rw

03
C: Cw

15
R : Rex

Se2 : Tex

1

16De3

1

TF: n2

R: Rm

04C: Cm De4

19

21

18

20

17

5

R: Ra

1
2

3
4

Se : Tin

1 R: Rh

01 C: ChDe1

Heater system

Wall system

Mattress system

External 
incubator

capacitance (C: Ch) in series with a restriction

(Rh);

★ The thermal capacity in the interior of the

incubator by a capacitance (C: Ca) in series

with a restriction (Ra);

6.2 Bond Graph Model

The incubator illustrated in figure 9 is modeled by

the bond graph of figure 3 as follows:

★ The thermal capacity of an electrical resistor

is modeled by a source of effort (Se: Te) with a

6. 3 Simulation Results of the Incubator

Figure 10 shows the evolution of temperature curves Th, Ta, Tw and Tm in the case of normal

operation.
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Fig. 10: Evolution of Temperature Curves Th, Ta, Tw and Tm in the Case of Normal Operation

● Determination of residue equations

❖ The junction 01 gives us as equation:

r1= f3 – f4 – f5

According to these relations, one can deduce the residual equation r1:

(17)

❖ The junction 02 gives us as equation:

r2 = f8 – f9 – f10 – f17

According to these relations, one can deduce the residual equation r2:

(18)

❖ The junction 03 gives us as equation:

r3 = f12 – f13 – f14

According to these relations, one can deduce the residual equation r3:

(19)

❖ The junction 04 gives us as equation:

r4 = f20 – f21

According to these relations, one can deduce the residual equation r4:

(20)

The default signature matrix is associated with the set of residues (r1, r2, ... rn) with the elements

associated with the system (F1, F2, ..., Fn). We denote the value M = 1 if the residual i is sensitive to this
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Table 1: Fault Signatures Matrix for the Incubator

r1 r2 r3 r4

F1: Tin 1 0 0 0

F2: Tex 0 0 1 0

F3: Ch 1 0 0 0

F4: Ca 0 1 0 0

F5: Cw 0 0 1 0

F6: Cm 0 0 0 1

F7: Rh 1 0 0 0

F8: Ra 1 1 0 0

F9: Rw 0 0 1 0

F10: Rm 0 1 0 1

F11: Rp 0 0 1 0

F12: n1 1 1 0 0

F13: n2 0 1 0 1

F14: De1 1 1 0 0

F15: De2 1 1 1 1

F16: De3 0 1 1 0

F17: De4 0 1 0 1

Figure 11 shows the evolution of residues r1, r2, r3 and r4 as a normal function. The pitches of the

residues converge towards zero under normal operating conditions.

Fig. 11: Evolution of Residues r1, r2, r3 and r4 in the Case of Normal Operation

6. 4 Simulation Incubator With Faults

● Fault on the Thermal Source

When a fault occurs on the heat source (damage to the heating resistance of the incubator) at the time t

= 12000s, we find that:

element, the opposite case M = 0, in the end we obtain the following signatures the table represented

below. In our case, we have (4) four residues (17) seventeen elements.
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Fig. 12: Evaluation Of Residues r1, r2, r3 and r4 in the Case of a Fault on the Thermal Source

Fig. 13: Evaluation of temperatures Th, Ta, Tw and Tm in the case of a fault on the thermal source

● Fault inside the incubator

When a fault occurs on the incubator (open door of the incubator) at the time t = 17000s, we find that:

★ The residues r1, r2, r3 and r4 have non-zero average values, these residues are therefore sensitive

to this defect, which is confirmed, by the theoretical results presented in table 2 (see Figure 14).
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★ Temperatures Th, Ta, Tw and Tm suffered declines in their speed at the moment of failure (see

Figure 13).
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★ All the residues r1, r2, r3 and r4 have non-zero average values, these residues are therefore

sensitive to this defect, which is confirmed, by the theoretical results presented in table 2 (see

Figure 12).



Fig. 14: Evaluation of Residues r1, r2, r3 and r4 in the Case of Default in Inside the Incubator

Evaluation of Temperatures Th, Ta, Tw and Tm in the Case of Default in Inside the Incubator

VII. ROBUST DIAGNOSIS BY BOND GRAPHS
7.1 BG-LFT Model of the Incubator Flawless
Figure 16 shows the BG-LFT model of the incubator system flawless. To determine the residues, we

must put the system in the form derivative and also put sensors under dialyzed.

● Determination of residues flawless

★ The junction 01gives us as equation:

Rd1 = f3 – f4 – f5+ wCh + w1/Rh + w1/Ra
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★ Temperatures Th, Ta, Tw and Tm suffered declines in their speed at the moment of failure (see

Figure 15).



The equation consists of two parts: the first part is the normal evolution of the residual r1n and the

second part represents the residual uncertainty related to the evolution of the parameters d1:

★ The junction 02 gives us as equation:

Rd2 = r2 = f8 – f9 – f10 – f17 + wCa + w1/Ra + w1/Rw

From this relation, we can deduce the residual equation Rd2:

(22)














+++=

−
−−

−
=

+=

      

)..(.

1111

211111
1

111

RwRaRh
Ch

inp
n

n

wwwwd
Ra

DeDenn
dt

dDeCh
Rh

DeT
r

drRd

                                
  w  ww

Rw
DeDe

Ra
DeDe

dt
dDe

.CaRd
Rw
1

Ra
1Ca

31212
2 +++

−
−

−
−=

L
on

d
on

 J
ou

rn
al 

 o
f 

E
n

gi
n

ee
ri

n
g 

R
es

ea
rc

h

©2024 Great Britain Journals PressVolume 24 | Issue 1 | Compilation 1.060

Reliability of the Bond Graph Approach for Robust Diagnosis of a Newborn Incubator System

From this relation, we can deduce the residual equation Rd1:

(21)
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Fig. 16: GB-LFT Approach Incubator System with Derivative Mode
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The equation consists of two parts: the first part is the normal evolution of the residual r1n and the

second part represents the residual uncertainty related to the evolution of the parameters d1:

★ The junction 02 gives us as equation:

Rd2 = r2 = f8 – f9 – f10 – f17 + wCa + w1/Ra + w1/Rw

From this relation, we can deduce the residual equation Rd2:

(22)

The equation consists of two parts: the first part is the normal evolution of the residual r2n and the

second part represents the residual uncertainty related to the evolution of the parameters d2:

★ The junction 03 gives us as equation:

Rd3 = f12 – f13 – f14 +wCw + w1/Rw+ w1/Rp

From this relation, we can deduce the residual equation Rd3:

(23)

The equation consists of two parts: the first part is the normal evolution of the residual r3n and the

second part represents the residual uncertainty related to the evolution of the parameters d3:

★ The junction 04 gives us as equation:

Rd4 = f20 – f21 +wCm + w1/Rm
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According to these relations, one can deduce the residual equation Rd4:

(24)

The equation consists of two parts: the first part is the normal evolution of the residual r4n and the

second part represents the residual uncertainty related to the evolution of the parameters d4:

7.2: BG-LFT Model of the Incubator with Faults

Figure 17 shows the BG-LFT model of incubator system with defaults. We have introduced seven faults,

four parametric faults (YRh, YRa,, YRw, and YRm) and two structural faults (Yh and Ya).

● Determination of residues with faults

★ The junction 01gives us as equation:

Rd1 = f3 – f4 – f5 + w1
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Fig. 17: BG-LFT Approach Incubator System With Derivative Mode and Four Parametric Faults (YRh,

YRa,, YRw, and YRm) and Two Structural Faults (Ya and Yw)
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According to these relations, one can deduce the residual equation Rd1:

(25)

With: w1= wCh + w1/Rh + w1/Ra + Y1/Rh.fh+ Y1/Ra.fa

The equation consists of two parts: the first part is the normal evolution of the residual r1n and the

second part represents the residual uncertainty related to the evolution of the parameters d1:

★ The junction 02 gives us as equation:

Rd2 = f8 – f9 – f10 + w2

According to these relations, one can deduce the residual equation Rd2:

With: w2= w1/Ra+ w1/Rw+wCa+ Y1/Ra.fa+ Y1/Rw.fw+ Ya

The equation consists of two parts: the first part is the normal evolution of the residual r2n and the

second part represents the residual uncertainty related to the evolution of the parameters d2:

(26)

★ The junction 03 gives us as equation:

Rd3 = f12 – f13 +w3

According to these relations, one can deduce the residual equation Rd3:

(27)

With: w3= w1/Rw + wCw + Y1/Rw.fw+ Yw

The equation consists of two parts: the first part is the normal evolution of the residual r3n and the

second part represents the residual uncertainty related to the evolution of the parameters d3:
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★ The junction 04 gives us as equation:

Rd4 = f20 – f21 +w4

According to these relations, one can deduce the residual equation Rd4:

(28)

With: w3= w1/Rw + wCw + Y1/Rm.fm

The equation consists of two parts: the first part is the normal evolution of the residual r4n and the

second part represents the residual uncertainty related to the evolution of the parameters d4:

VIII. PERFORMANCE INDICES FOR INCUBATOR

8. 1: Sensitivity Index (SI)

Residue Rd1:

(29)

Residue Rd2:

(30)

Residue Rd3:

(31)

Residue Rd4:

(32)
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8.2. Detectability index (DI)

Residue Rd1 :

In this way, the defect detectability index of the residue Rd1 is obtained:

(37)If then

● The detectable rate Y1/Rh of a defect on the element Rh is calculated by supposing Y1/Ra = 0

● The detectable rate Y1/Ra of a defect on the element Ra is calculated by supposing Y1/Rh = 0

Residue Rd2 :

In this way, the defect detectability index of the residue Rd2 is obtained:

(38)
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● The detectable rate Y1/Ra of a defect on the element Ra is calculated by supposing Y1/Rw= Y1/Rm= Ya =

0

● The detectable value Y1/Rw of a defect on the element Rw is calculated assuming Y1/Ra = Y1/Rm= Ya = 0
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● The detectable value Y1/Rm of a defect on the element Rm is calculated assuming Y1/Ra = Y1/Rw= Ya = 0

● The detectable value Ya of the structural defect is calculated assumingY1/Ra =Y1/Rw= Y1/Rm= 0

Residue Rd3 :

In this way, the defect detectability index of the residue Rd3 is obtained:

(34)

If then

● The detectable rate Y1/Rw of a defect on the element Rw is calculated by supposing Y1/Rp = Yw = 0

● The detectable rate Y1/Rp of a defect on the element Rp is calculated by supposing Y1/Rw = Yw = 0

● The detectable value Yw of the structural defect is calculated assuming Y1/Rw = 0
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Residue Rd4 :

In this way, the defect detectability index of the residue Rd3 is obtained:

(40)
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● The detectable rate Y1/Rm of a defect on the element Rw is calculated by the equation:
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IX. CONCLUSION

In this paper, we presented diagnostic methods

using the Bond Graph approach. The analytical

redundancy relationships generated using the

parity space method depends on the knowledge of

the degree of derivations to be applied. The

advantages of using the last method are:

simplicity of understanding (ARRs) since they

correspond to relationships and variables that are

displayed by the leap graph model, and then the

transition to the LFT form made by a simple

addition of modulated sources of effort and flow

on the model, image of the physical process,

ARRs are deduced directly from the graphical

representation, they can be generated in symbolic

form and therefore adapted to a computer

implementation.
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