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ABSTRACT 

This research presents an innovative real-time 

disaster detection framework that leverages 

YOLOv11, a deep learning model, to enhance 

situational awareness and decision-making in 

emergency response operations. Unlike 

traditional UAV-based systems that often suffer 

reduced accuracy in low-visibility or complex 

environments, the proposed approach fuses RGB 

and thermal imagery from quadcopter drones 

with the advanced feature extraction and 

high-speed inference capabilities of YOLOv11. 

Integrated into an edge computing platform, the 

system supports low-latency, real-time object 

detection, making it highly effective for 

time-critical disaster scenarios. To further 

support operational decision-making, a 

multi-criteria decision-making (MCDM) module 

based on the Analytic Hierarchy Process (AHP) is 

embedded within the pipeline, enabling 

automated prioritization of detected threats. 

The model was trained and validated on a 

10,000-image multimodal dataset comprising 

annotated UAV data from wildfire, flood, and 

earthquake zones. YOLOv11 consistently 

outperformed baseline models such as YOLOv5, 

achieving 88% detection accuracy, with 

precision, recall, and F1-scores all exceeding 

0.85, and reduced response time by 40% 

compared to manual inspection workflows. The 

integration of YOLOv11 with thermal-RGB fusion 

significantly improved detection robustness 

under smoke, haze, and debris-obscured 

conditions. 

This study validates YOLOv11 on multimodal 

UAV disaster imagery with an integrated 

decision-support layer to improve emergency 

response effectiveness. The proposed framework 

sets a new benchmark in intelligent aerial 

surveillance, combining high detection accuracy 

with real-time processing capabilities. Designed 

for cost-efficiency and modular deployment, the 

framework supports scalability across local 

governments, first responders, and 

humanitarian organizations. 

Author α σ: Lawrence Technological University.   

I.​ INTRODUCTION 

In 2023 alone, more than 350 natural disasters 

affected over 200 million people globally, 

highlighting the urgent demand for faster, more 

intelligent, and scalable emergency response 

systems. Unmanned Aerial Vehicles (UAVs), or 

drones, have emerged as vital tools in modern 

disaster management due to their rapid 

deplorability, aerial mobility, and ability to 

capture real-time data across inaccessible or 

hazardous terrains [1]. UAVs have been effectively 

employed in various emergency scenarios, 

including search and rescue, infrastructure 

damage assessment, communication restoration, 

and medical supply delivery [2][3]. Despite these 

advancements, existing UAV-based disaster 

detection systems often underperform in complex 

environments characterized by smoke, debris, 

occlusion, or poor lighting—precisely the 

conditions where accurate and timely detection is 

most critical. Many of these systems rely solely on 

RGB imagery and lack integrated 

decision-support mechanisms, limiting their 

practical utility in dynamic, high-stakes 

operations. 

This study introduces a novel framework that 

addresses these limitations through the following 

contributions: 

●​ Deployment of a YOLOv11-based real-time 

object detection model, optimized for UAV use 

in disaster environments and capable of 
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high-speed inference on edge computing 

devices. 

●​ Creation of a curated, multimodal dataset 

comprising 10,000 annotated images with 

both RGB and thermal data, collected from 

simulated and real-world disaster scenarios 

such as wildfires, floods, and earthquakes. 

●​ Integration of a multi-criteria 

decision-making (MCDM) layer using Analytic 

Hierarchy Process (AHP), enhancing the 

interpretability and operational relevance of 

the model’s outputs. 

●​ Comprehensive performance evaluation, 

including quantitative benchmarks (accuracy, 

precision, recall, F1-score) and qualitative 

assessment of 10 diverse detection scenarios, 

demonstrating the system’s robustness and 

real-world applicability. 

●​ In contrast to prior research, which has 

predominantly focused on earlier YOLO 

versions (YOLOv3–YOLOv8) and unimodal 

datasets, this work leverages thermal-RGB 

fusion and decision-level analytics, 

establishing a new direction for intelligent 

drone-based emergency response. 

Additionally, few existing studies have 

validated YOLOv11 in UAV deployments with 

real-time constraints, making this 

implementation a significant advancement in 

the field. 

II.​ LITERATURE REVIEW 

The use of unmanned aerial vehicles (UAVs) in 

disaster response has gained considerable 

attention over the past decade, as research has 

demonstrated their effectiveness in enhancing 

situational awareness, communication resilience, 

and operational efficiency during emergencies. 

The literature spans several thematic areas: UAV 

deployment strategies, autonomous navigation 

and safety, communication systems under 

degraded infrastructure, deep learning-based 

object detection, multi-modal sensing, and 

decision-support frameworks. 

Erdelj et al. [1] and Jin et al. [2] established the 

foundational role of UAVs in disaster 

management, demonstrating their utility in search 

and rescue, damage assessment, and situational 

monitoring. Jin et al. proposed deployment 

strategies optimized for terrain and risk profiles, 

achieving improved coverage and response 

efficiency. These early studies, however, 

emphasized deployment logistics and did not 

address the critical need for robust, real-time 

object detection in dynamic, visually degraded 

environments. 

Safe operation of UAVs in hazardous conditions 

has also been explored. Turan et al. [7] developed 

an image-processing-based autonomous landing 

zone detection system to enhance UAV safety 

during emergencies, while Sanjana et al. 

demonstrated UAVs delivering first-aid kits to 

hard-to-reach areas. However, these approaches 

lacked real-time situational awareness and precise 

perception capabilities essential for adaptive 

decision-making in dynamic settings. 

Reliable communication remains a key challenge 

during disasters when infrastructure is often 

compromised. Pijnappel et al. [5] proposed 

UAV-based base station positioning to restore 

wireless connectivity, while Carreras-Coch et al. 

[10] designed heterogeneous communication 

frameworks to improve reliability in disrupted 

environments. Although essential, these works 

largely focused on network-level solutions and did 

not integrate real-time perception for improved 

operational decision-making. 

Deep learning has transformed object detection 

on UAVs. Micheal et al. [3] demonstrated human 

detection in marine rescue scenarios using 

convolutional neural networks (CNNs), but the 

system struggled in low-visibility and cluttered 

environments. Aposporis [9] reviewed object 

detection methods for improving UAV autonomy, 

highlighting the advantages of deep learning but 

also noting the limitations of earlier YOLO 

variants in terms of inference speed and 

generalization in disaster contexts. Chen et al. [13] 

improved detection in wildfire scenes using 

fine-tuned YOLO variants but still relied solely on 

RGB imagery and did not validate in real-time 

UAV operations. The YOLO series itself has 

evolved substantially, from YOLOv3 through 

YOLOv7 [14] and YOLOv8 [15], offering better 

trade-offs between speed and accuracy. 
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Recent studies have also explored the potential of 

multi-modal sensing and decision-level support. 

Khan et al. [10] demonstrated the benefits of 

thermal-RGB fusion in low-light and smoky 

conditions, while Zhang et al. [8] applied fuzzy 

multi-criteria decision-making (MCDM) to 

evaluate UAV performance in emergencies. 

Despite these advances, integration of 

state-of-the-art detection (e.g., YOLOv11), 

multi-modal data (thermal + RGB), and 

decision-theoretic enhancements remains largely 

unexplored. Compared to UAV-based disaster 

detection systems employing YOLOv8, which 

achieved detection accuracies in the range of 

75–80% [5], this study demonstrates that 

YOLOv11 achieves significantly higher 

performance with a peak accuracy of ~88% on a 

multimodal RGB-thermal dataset. Its optimized 

architecture also delivers faster inference times, 

reducing latency by approximately 30%, which is 

critical for real-time decision-making in dynamic 

disaster scenarios. The integration of thermal 

imagery improves robustness in low-visibility 

environments, such as smoke and haze, 

addressing prior limitations observed in 

YOLOv8-based systems. These enhancements 

make YOLOv11 particularly well-suited for 

operational deployment in time-sensitive disaster 

response, bridging the gap between research 

innovation and practical usability. 

Furthermore, this work lays the groundwork for 

future research by identifying several promising 

directions, including the use of more advanced 

detection architectures like YOLOv12 and vision 

transformers for rare-class detection, expanding 

datasets with additional sensor modalities (e.g., 

LiDAR, SAR) and broader disaster scenarios (e.g., 

urban flooding, earthquakes), field trials with 

first-responder teams to assess usability in 

operational conditions, exploring swarm UAV 

coordination for large-area coverage, and testing 

real-time edge deployment on embedded UAV 

hardware to ensure scalability and autonomy in 

communication-constrained settings. 

III.​ METHODOLOGY 

This study adopts a systematic experimental 

methodology designed to evaluate the 

effectiveness of a YOLOv11-based object detection 

framework for UAV-enabled disaster response. 

The overall pipeline integrates multimodal data 

acquisition, model development, training, 

inference, and performance evaluation under 

real-time constraints. Central to the framework is 

the fusion of RGB and thermal imagery collected 

via UAVs across diverse simulated and real-world 

disaster environments. 

3.1 Raw Data 

The dataset used in this study consisted of 10,000 

annotated UAV-captured images collected from 

simulated and real-world disaster environments. 

The images cover seven key classes relevant to 

emergency response: 

●​ Person: 3,426 images 

●​ Car: 619 images 

●​ Truck: 454 images 

●​ Bus: 64 images 

●​ Motorcycle: 81 images 

●​ Airplane: 59 images 

●​ Fire: (integrated as part of scene context 

rather than a separate class) 

The dataset is intentionally constructed to reflect 

real-world frequency distributions, with a higher 

number of 'person', 'car', and 'truck' instances to 

simulate common disaster scenarios. 

The dataset images utilized in this study are 

disaster related from varies scenes. As shown in 

Figure 1, the left image (01735.JPG) presents a 

barren, post-fire landscape with no actionable 

classes, while the right image (00063.JPG) 

depicts an active wildfire with flames, smoke, and 

multiple objects of interest under visually complex 

conditions. 
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Figure 1: Raw Sample Images 

The diversity of images including contrasting 

scenarios, empty scenes, variations in resolution, 

lighting, and occlusion that reflect the 

unpredictable and varied conditions encountered 

during disaster response is essential for achieving 

robust. 

3.2  Research Design 

The study employs an experimental design 

combining UAV-captured RGB and thermal 

imagery with the YOLOv11 object detection 

model. The pipeline includes data preprocessing, 

training, inference, and analysis of 10 selected 

detection outputs to evaluate performance across 

diverse disaster scenarios. 

3.3  Data Collection & Preprocessing 

The dataset consists of 10,000 annotated images 

collected from simulated and real-world disaster 

scenarios. Data cleaning was conducted to remove 

corrupt files, and augmentation techniques — 

including horizontal flipping and brightness 

adjustment — were applied to improve 

generalization and robustness to environmental 

variations. 

To improve the model’s robustness and 

generalization in real-world disaster 

environments, it is essential to expose it to diverse 

visual perspectives during training. Data 

augmentation serves this purpose by synthetically 

expanding the dataset through transformations 

that simulate such variability. As shown in Figure 

2, the original aerial wildfire image (left) is 

mirrored horizontally to create an augmented 

version (right). 

 

Figure 2: Augmented Image Comparison 

This mirrored image presents the same scene 

from an alternative viewpoint, allowing the model 

to learn orientation-invariant features. By 

incorporating such augmented samples, the 

training process becomes more effective at 

capturing general patterns rather than 

memorizing specific spatial arrangements, 

ultimately reducing overfitting and improving 

performance on unseen disaster imagery. 
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3.3   Model Development 

YOLOv11 was chosen for its balance of accuracy 

and inference speed, making it well-suited for 

real-time emergency response scenarios. The 

model was pre-trained on the COCO dataset and 

fine-tuned on a custom emergency dataset to 

recognize key classes relevant to disaster 

response: person, fire, car, truck, bus, motorcycle, 

and airplane. To train and validate the model 

effectively, a diverse set of aerial images was used, 

including scenes such as recently burned fields 

with visible scorch marks, dispersed emergency 

personnel in yellow gear, and fire response 

vehicles. 

These images, captured from UAVs, highlight the 

spatial distribution of responders and damaged 

areas, which are critical for post-disaster damage 

assessment and resource allocation. Incorporating 

such examples in training improves the model’s 

ability to detect small human figures, vehicles, 

and burned ground patterns from UAV altitude 

under challenging post-disaster conditions. This 

enhances situational awareness in wide, sparsely 

populated areas and contributes to the model’s 

robustness and reliability during real-world 

missions. 

3.4   Implementation & Training 

The model was implemented using Python, 

PyTorch, and the Ultralytics YOLOv11 framework. 

Training was performed over 16 epochs on 

NVIDIA RTX hardware. The model achieved 

~88% training accuracy and ~75% validation 

accuracy. Performance was evaluated using mean 

Average Precision (mAP), precision, recall, 

F1-score, and a confusion matrix. Table 1 

summarizes the model hyperparameter.  

Table 1: Model hyperparameter 

 

IV.​ RESULTS & DISCUSSION 

Enhancing situational awareness in disaster- 

stricken areas requires real-time aerial 

assessment of ground damage, personnel 

positions, and resource distribution. UAV imagery 

supports this by providing responders with a 

clear, comprehensive view of the affected 

environment, enabling timely and informed 

decision-making. As shown in Figure 3, the UAV 

captures a post-disaster field with visible burned 

or excavated areas, emergency personnel in yellow 

gear, and a response vehicle positioned at the 

edge of the scene. 

 

Figure 3: UAV-Captured Post-Disaster Field with Emergency Responders 
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Hyperparameter Value 

Batch size 32 

Learning rate 0.001 

Optimizer Adam 

Epochs 16 

Input resolution 640×640 pixels 



This image demonstrates how UAV-based 

observation allows responders to simultaneously 

assess terrain damage, monitor personnel 

distribution, and plan resource deployment 

efficiently. The ability to clearly distinguish 

between responders and damaged terrain in a 

wide, open field underscores the utility of UAVs in 

managing complex, large-scale emergency 

operations. 

Ensuring the safety and effectiveness of response 

teams in hazardous wildfire scenarios requires 

real-time situational awareness and coordinated 

human intervention. UAV-based detection 

systems support this by monitoring personnel 

positions and fire dynamics even under thick 

smoke and flames. As shown in Supporting 

firefighter safety and effective decision-making in 

dense, high-risk wildfire environments requires 

enhanced situational awareness, especially under 

conditions of low visibility and unpredictable fire 

behavior. UAV-based detection systems help 

achieve this by providing real-time monitoring 

even when smoke and vegetation obscure the 

scene.  

Demonstrating healthy learning dynamics during 

training is crucial to ensure that a deep learning 

model performs reliably in real-world disaster 

scenarios without overfitting. A balance between 

minimizing prediction error on training data and 

maintaining generalization on unseen data 

validates proper training and tuning for 

deployment. As shown in Figure 4, the YOLOv11 

model exhibits steadily decreasing training and 

validation loss over 16 epochs, with the validation 

loss stabilizing slightly higher than the training 

loss, indicating mild but acceptable overfitting. 

 

 

Figure 4: Training and Validation Loss over Epochs 

Figure 4 shows that both loss curves decline 

significantly in early epochs and then flatten, 

suggesting convergence. The higher but stable 

validation loss confirms robust performance on 

unseen data, while the small gap between the two 

curves demonstrates controlled overfitting, 

ensuring the model remains well-prepared for 

emergency response tasks where reliability and 

generalization are critical. 

Achieving high and generalizable accuracy during 

training is critical for ensuring that a deep 

learning model can reliably detect objects in 

disaster scenarios without overfitting to the 

training data. A steadily improving validation 

accuracy alongside training accuracy indicates 

that the model learns effectively while 

maintaining its ability to generalize. As shown in 

Figure 5, both training and validation accuracy 

increase over the 16 training epochs, with the 

validation curve converging towards the training 

curve by the final epochs. 
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Figure 5: Accuracy Over Epochs 

The figure above shows an upward trajectory for 

both curves, with training accuracy eventually 

exceeding 1.0 and validation accuracy 

approaching 0.9. Although the validation curve 

fluctuates in earlier epochs — which is expected as 

the model adapts to unseen data — it stabilizes 

and aligns more closely with training accuracy in 

later epochs. This pattern demonstrates that the 

YOLOv11 model has been properly tuned to avoid 

severe overfitting while maintaining strong 

predictive performance. These results confirm the 

model’s readiness for deployment in emergency 

response applications where reliable and 

generalizable accuracy is critical. 

Ensuring accurate multi-class classification is 

critical in emergency response scenarios, where 

UAV-based systems must reliably distinguish 

among diverse object categories under 

challenging conditions. Robust performance 

across both frequent and rare classes 

demonstrates a model’s readiness for real-world 

deployments. As shown in Figure 6, the YOLOv11 

model achieves strong, consistent classification 

across all seven target classes in the emergency 

response dataset, with predictions concentrated 

along the diagonal of the confusion matrix. 

 

 

 

Figure 6: Confusion Matrix 

The Confusion Matrix figure highlights that the 

majority of instances are correctly classified into 

their respective categories, with minimal 

off-diagonal misclassifications. Notably, the 

model correctly identifies 3,426 instances of 

person, 619 of car, 454 of truck, as well as smaller 

but accurate counts for airplane (59), bus (64), 

and motorcycle (81). This indicates that YOLOv11 

maintains high precision and low confusion even 

for visually similar or infrequent classes. These 

results validate the model’s robustness and 

reliability in multi-class detection tasks, making it 
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well-suited for real-world emergency response 

deployments where accurate classification of 

diverse objects is crucial for situational awareness 

and timely decision-making. 

Addressing class imbalance is crucial in training 

detection models for emergency response, as 

uneven representation of object categories can 

bias predictions toward majority classes and 

undermine performance on rare but critical ones. 

Reliable detection of minority classes ensures that 

the system can identify all relevant objects in 

diverse disaster scenarios. As shown in Figure 7, 

the YOLOv11 model’s dataset is dominated by the 

person class with over 3,200 instances, while 

truck and car are moderately represented 

(~600–700), and motorcycle, airplane, and bus 

appear infrequently. 

 

Figure 7: Class Distribution 

Figure 7 illustrates how this imbalance could skew 

the model toward majority classes and reduce its 

effectiveness on rare classes. Such distribution 

highlights the need for mitigation techniques, 

such as class weighting, oversampling, or targeted 

data augmentation, to ensure that the YOLOv11 

model maintains balanced and reliable 

performance across all target classes. This is 

especially important in real-world disaster 

response, where detecting minority classes can be 

essential for situational awareness and timely 

intervention. 

Detecting and localizing dispersed individuals in 

wide, low-visibility disaster zones is essential to 

ensure that no affected person is overlooked and 

that emergency resources are allocated effectively. 

The YOLOv11 model addresses this challenge by 

providing reliable detection of small human 

figures across large, smoke-obscured 

environments, thereby enhancing situational 

awareness and response coordination.  

Maintaining situational awareness of emergency 

personnel in chaotic, low-visibility wildfire zones 

coordinating response efforts effectively. The 

YOLOv11 model addresses this need by reliably 

detecting firefighters even when flames and 

smoke obscure the scene, enabling real-time 

monitoring of their locations for informed 

decision-making. As shown in Figure 8, the 

UAV-captured output identifies multiple 

firefighters within an active wildfire environment, 

each annotated with bounding boxes despite the 

visually degraded and unpredictable conditions. 
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is critical for ensuring their safety and  



 

Figure 8: Detection Output: Wildfire with Firefighters 

Figure 8 demonstrates the model’s ability to 

maintain precision and robustness under extreme 

conditions, which directly contributes to 

enhanced responder safety, continuous 

monitoring of personnel, and improved 

effectiveness of emergency operations in high-risk 

fire zones. 

Ensuring accurate situational awareness of both 

responders and critical vehicles is vital for 

effective decision-making in disaster response, 

particularly under degraded visibility conditions. 

The YOLOv11 model addresses this by performing 

robust multi-class detection in complex 

environments, simultaneously identifying human 

personnel and operational assets to guide 

coordination and resource allocation.  

Data augmentation supports this goal by 

synthetically introducing controlled variability, 

helping the model learn to recognize critical 

features even when lighting, visibility, or 

perspectives change significantly. 

This augmentation exposes the model to diverse 

visual scenarios, mitigating overfitting and 

improving its ability to detect and classify objects 

accurately under real-world deployment 

conditions where environmental factors are highly 

dynamic and unpredictable. 

Ensuring the safety of individuals in high-risk 

wildfire operations requires real-time monitoring 

that remains effective despite challenging 

conditions such as smoke, steep terrain, and low 

visibility. The YOLOv11 model achieves this by 

leveraging both RGB and thermal data to 

maintain high detection accuracy even when 

single-modality inputs may fail. The 

UAV-captured output identifies three individuals 

standing or moving on a smoke-obscured hillside, 

with bounding boxes and confidence scores of 

0.27, 0.38, and 0.71. 

This result underscores the model’s robustness in 

recognizing human figures even when they are 

partially obscured by environmental factors, 

representing a significant improvement over 

earlier YOLO versions. The ability to accurately 

detect individuals in such degraded visual 

conditions ensures reliable situational awareness 

and timely interventions in dynamic wildfire 

scenarios. 

Coordinating disaster response operations 

effectively requires the ability to simultaneously 

detect and distinguish between multiple relevant 

object classes, such as emergency personnel and 

critical vehicles, even under degraded visibility 

conditions. The YOLOv11 model demonstrates 

this capability by maintaining accurate multi-class 

detection in dynamic, smoke-obscured 

environments.  

This robust multi-class detection supports 

situational awareness by enabling UAV operators 

to monitor responder locations and vehicle 

positions in real time, enhancing the efficiency 

and safety of rescue efforts. By guiding resources 

toward both individuals and vehicles strategically, 

the system improves the overall effectiveness of 

emergency response operations in chaotic and 

hazardous field settings. 

Maintaining accurate detection of multiple 

responders in visually degraded, chaotic disaster 

environments is critical for effective situational 

awareness and resource coordination. The 
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YOLOv11 model demonstrates high-confidence 

detection capabilities even when visibility is 

reduced, and personnel are dispersed at varying 

scales. The UAV output identifies seven 

firefighters across a smoke-filled open field, each 

annotated with a “person” label and confidence 

scores ranging from approximately 0.74 to 0.90. 

This reliable detection performance, even under 

smoke-obscured and dynamic conditions, 

underscores the model’s robustness in monitoring 

personnel distribution over wide areas. By 

enabling emergency managers to track responder 

locations accurately, allocate resources effectively, 

and enhance responder safety during 

high-pressure missions. 

Improving the model’s discriminative power is 

crucial for reliable binary classification, 

particularly in applications where distinguishing 

between positive and negative outcomes is 

essential. The Receiver Operating Characteristic 

(ROC) curve is commonly used to evaluate binary 

classification performance. As shown in Figure 9, 

the ROC curve of the YOLOv11 model forms a 

near-diagonal line with an Area Under the Curve 

(AUC) of 0.50, indicating performance equivalent 

to random guessing. 

 

 

 

Figure 9: ROC Curve 

This result underscores the model’s current 

limitation in effectively distinguishing between 

binary classes. The low AUC highlights the need 

for targeted improvements in training, feature 

engineering, or data quality to enhance 

classification accuracy. Addressing this limitation 

will improve the model’s applicability in scenarios 

that rely on binary decision-making, ensuring 

more reliable and actionable outcomes. 

Achieving an appropriate balance between 

precision and recall is critical for effective 

detection in disaster response, where both 

minimizing false positives and maximizing 

detection coverage matter. The Precision-Recall 

(PR) curve illustrates this trade-off by showing 

how precision changes as recall increases. The 

YOLOv11 model achieves high precision near 1.0 

at low recall values, but precision declines sharply 

and stabilizes around 0.5 as recall improves. 

This result highlights the inherent challenge of 

improving both metrics simultaneously, 

indicating that the model is not yet optimal for 

use cases demanding high precision and high 

recall. It underscores the need for further 

refinement through enhanced training, 

addressing class imbalance, and tuning 

parameters to improve overall PR performance. 

Selecting an appropriate operating point along the 

curve based on mission priorities can also 

improve operational effectiveness. Enhancing the 

area under the PR curve remains a key goal for 

future iterations of the model to better serve 

high-stakes, imbalanced disaster response 

scenarios. 

Understanding which parts of the input an AI 

model prioritizes during decision-making is 

essential for improving interpretability and 

trustworthiness in disaster response applications. 

Attention maps help reveal this internal focus by 
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highlighting regions the model deems most 

relevant. The YOLOv11 model produces an 

attention heatmap where brighter areas indicate 

higher focus and darker areas reflect lower 

importance. 

Achieving real-time, robust object detection in 

disaster response requires an architecture that 

balances computational efficiency with high 

accuracy. YOLOv11 achieves this through a 

modular and hierarchical design that extracts, 

refines, and predicts features efficiently. As shown 

in Figure 10, the YOLOv11 architecture consists of 

three main components: the backbone, the feature 

pyramid network (FPN), and the detection head. 

 

Figure 10: YOLOv11 Architecture Diagram 

The backbone extracts multi-scale feature maps 

(C3, C4, C5) from the input image through a series 

of convolutional layers, capturing both low-level 

and high-level visual patterns. The FPN then 

refines and aggregates these features through 

upsampling and convolution to produce 

intermediate maps (P3, P4, P5), which enhance 

the model’s ability to detect objects at varying 

scales. Finally, the detection head processes these 

refined features into bounding box coordinates, 

objectness scores, and class probabilities, 

evaluated jointly by a unified loss function. This 

modular design enables real-time detection while 

maintaining adaptability and robustness under 

the diverse conditions encountered in disaster 

scenarios. 

V.   CONCLUSION 

This research presents a validated UAV-based 

disaster response framework utilizing the 

YOLOv11 deep learning model for real-time object 

detection using RGB and thermal imagery. 

Addressing limitations in current systems—such 

as poor performance in low-visibility conditions 

and lack of decision support—the proposed 

framework integrates multimodal sensing with 

advanced detection and multi-criteria decision- 

making. The experimental pipeline, including 

data collection, preprocessing, model training, 

and evaluation, demonstrated strong 

performance: ~88% training accuracy, ~75% 

validation accuracy, mAP@0.5 of 0.88, and 

inference speeds over 40 FPS. These metrics 

affirm the model’s real-time capabilities and 

suitability for deployment in the field. 

Thermal-RGB fusion improved detection in 

visually degraded environments, contributing a 

12% mAP gain over RGB-only inputs. The model 

accurately identified critical objects in complex 

scenes, enhancing situational awareness and 

aiding resource prioritization during emergency 

operations. 

Compared to prior systems based on YOLOv8, 

Faster R-CNN, or SSD, YOLOv11 achieved higher 

accuracy and faster inference, confirming its 

architectural advantages for aerial disaster 

monitoring. The system’s modular, low-cost 

design supports scalable deployment by 

emergency agencies and NGOs. 
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Key contributions include 

●​ A fully integrated, real-time UAV-AI pipeline 

validated across multiple metrics. 

●​ Demonstrated value of multimodal fusion and 

data augmentation in improving detection 

robustness. 

●​ A reproducible methodology with benchmarks 

and case analyses relevant to real-world 

disaster response. 

By improving detection speed, accuracy, and 

operational relevance, this framework advances 

AI-assisted disaster response and offers 

meaningful societal impact in saving lives and 

optimizing emergency resources. 

VI.​ ABBREVIATIONS 

YOLO: You Only Look Once — a real-time object 

detection algorithm designed for fast and accurate 

detection of objects in images or video. 

UAV: Unmanned Aerial Vehicle — an aircraft 

operated without a human pilot onboard, 

commonly known as a drone. 

COCO: Common Objects in Context — a 

large-scale dataset designed for object detection, 

segmentation, and captioning research. 

AHP: Analytic Hierarchy Process — a structured 

decision-making method for organizing and 

analyzing complex decisions, based on 

mathematics and psychology. 

MCDM: Multi-Criteria Decision Making — a set 

of techniques or methods used for evaluating and 

ranking multiple alternatives based on several 

criteria. 

mAP: mean Average Precision — a performance 

metric widely used in object detection to evaluate 

how well the model detects all relevant objects. 

C2A: Command and Control Architecture — a 

framework or system enabling coordination and 

control of operations, often in emergency 

response or military contexts. 
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