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Real-Time Object Detection in Disaster Zones
and UAV Thermal-RGB Imagery

Nedivi, Noam® & Bukaita, Wisam, PhD°

ABSTRACT

This research presents an innovative real-time
disaster detection framework that leverages
YOLOvi11, a deep learning model, to enhance
situational awareness and decision-making in
emergency  response  operations.  Unlike
traditional UAV-based systems that often suffer
reduced accuracy in low-visibility or complex
environments, the proposed approach fuses RGB
and thermal imagery from quadcopter drones
with the advanced feature extraction and
high-speed inference capabilities of YOLOvii.
Integrated into an edge computing platform, the
system supports low-latency, real-time object

detection, making it highly effective for
time-critical disaster scenarios. To further
support  operational  decision-making, a

multi-criteria decision-making (MCDM) module
based on the Analytic Hierarchy Process (AHP) is
embedded within the pipeline, enabling
automated prioritization of detected threats.

The model was trained and validated on a
10,000-image multimodal dataset comprising
annotated UAV data from wildfire, flood, and
earthquake  zones.  YOLOvii  consistently
outperformed baseline models such as YOLOuvg,
achieving 88% detection accuracy, with
precision, recall, and Fi-scores all exceeding
0.85, and reduced response time by 40%
compared to manual inspection workflows. The
integration of YOLOv11 with thermal-RGB fusion

significantly improved detection robustness
under smoke, haze, and debris-obscured
conditions.

This study validates YOLOvii1 on multimodal
UAV disaster imagery with an integrated
decision-support layer to improve emergency
response effectiveness. The proposed framework
sets a new benchmark in intelligent aerial
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surveillance, combining high detection accuracy
with real-time processing capabilities. Designed
for cost-efficiency and modular deployment, the
framework supports scalability across local
governments, first responders, and
humanitarian organizations.

Author a o Lawrence Technological University.

| INTRODUCTION

In 2023 alone, more than 350 natural disasters
affected over 200 million people globally,
highlighting the urgent demand for faster, more
intelligent, and scalable emergency response
systems. Unmanned Aerial Vehicles (UAVs), or
drones, have emerged as vital tools in modern
disaster management due to their rapid
deplorability, aerial mobility, and ability to
capture real-time data across inaccessible or
hazardous terrains [1]. UAVs have been effectively
employed in various emergency scenarios,
including search and rescue, infrastructure
damage assessment, communication restoration,
and medical supply delivery [2][3]. Despite these
advancements, existing UAV-based disaster
detection systems often underperform in complex
environments characterized by smoke, debris,
occlusion, or poor lighting—precisely the
conditions where accurate and timely detection is
most critical. Many of these systems rely solely on

RGB imagery and lack integrated
decision-support mechanisms, limiting their
practical  utility in dynamic, high-stakes
operations.

This study introduces a novel framework that
addresses these limitations through the following
contributions:

e Deployment of a YOLOvii-based real-time
object detection model, optimized for UAV use
in disaster environments and capable of
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high-speed inference on edge computing
devices.

e Creation of a curated, multimodal dataset
comprising 10,000 annotated images with
both RGB and thermal data, collected from
simulated and real-world disaster scenarios
such as wildfires, floods, and earthquakes.

e Integration of a multi-criteria
decision-making (MCDM) layer using Analytic
Hierarchy Process (AHP), enhancing the
interpretability and operational relevance of
the model’s outputs.

e Comprehensive performance evaluation,
including quantitative benchmarks (accuracy,
precision, recall, Fi-score) and qualitative
assessment of 10 diverse detection scenarios,
demonstrating the system’s robustness and
real-world applicability.

e In contrast to prior research, which has
predominantly focused on earlier YOLO
versions (YOLOv3—-YOLOv8) and unimodal
datasets, this work leverages thermal-RGB
fusion and decision-level analytics,
establishing a new direction for intelligent
drone-based emergency response.
Additionally, few existing studies have
validated YOLOv11 in UAV deployments with
real-time constraints, making this
implementation a significant advancement in
the field.

ll.  LITERATURE REVIEW

The use of unmanned aerial vehicles (UAVs) in
disaster response has gained considerable
attention over the past decade, as research has
demonstrated their effectiveness in enhancing
situational awareness, communication resilience,
and operational efficiency during emergencies.
The literature spans several thematic areas: UAV
deployment strategies, autonomous navigation
and safety, communication systems under
degraded infrastructure, deep learning-based
object detection, multi-modal sensing, and
decision-support frameworks.

Erdelj et al. [1] and Jin et al. [2] established the
foundational role of UAVs in disaster
management, demonstrating their utility in search
and rescue, damage assessment, and situational

monitoring. Jin et al. proposed deployment
strategies optimized for terrain and risk profiles,
achieving improved coverage and response
efficiency. These early studies, however,
emphasized deployment logistics and did not
address the critical need for robust, real-time
object detection in dynamic, visually degraded
environments.

Safe operation of UAVs in hazardous conditions
has also been explored. Turan et al. [7] developed
an image-processing-based autonomous landing
zone detection system to enhance UAV safety
during emergencies, while Sanjana et al
demonstrated UAVs delivering first-aid kits to
hard-to-reach areas. However, these approaches
lacked real-time situational awareness and precise
perception capabilities essential for adaptive
decision-making in dynamic settings.

Reliable communication remains a key challenge
during disasters when infrastructure is often
compromised. Pijnappel et al. [5] proposed
UAV-based base station positioning to restore
wireless connectivity, while Carreras-Coch et al.
[10] designed heterogeneous communication
frameworks to improve reliability in disrupted
environments. Although essential, these works
largely focused on network-level solutions and did
not integrate real-time perception for improved
operational decision-making.

Deep learning has transformed object detection
on UAVs. Micheal et al. [3] demonstrated human
detection in marine rescue scenarios using
convolutional neural networks (CNNs), but the
system struggled in low-visibility and cluttered
environments. Aposporis [9] reviewed object
detection methods for improving UAV autonomy,
highlighting the advantages of deep learning but
also noting the limitations of earlier YOLO
variants in terms of inference speed and
generalization in disaster contexts. Chen et al. [13]
improved detection in wildfire scenes using
fine-tuned YOLO variants but still relied solely on
RGB imagery and did not validate in real-time
UAV operations. The YOLO series itself has
evolved substantially, from YOLOv3 through
YOLOv7 [14] and YOLOVS [15], offering better
trade-offs between speed and accuracy.
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Recent studies have also explored the potential of
multi-modal sensing and decision-level support.
Khan et al. [10] demonstrated the benefits of
thermal-RGB fusion in low-light and smoky
conditions, while Zhang et al. [8] applied fuzzy
multi-criteria  decision-making (MCDM) to
evaluate UAV performance in emergencies.

Despite  these advances, integration of
state-of-the-art  detection (e.g., YOLOv11),
multi-modal data (thermal + RGB), and

decision-theoretic enhancements remains largely
unexplored. Compared to UAV-based disaster
detection systems employing YOLOvV8, which
achieved detection accuracies in the range of
75—80% [5], this study demonstrates that
YOLOv11 achieves significantly higher
performance with a peak accuracy of ~88% on a
multimodal RGB-thermal dataset. Its optimized
architecture also delivers faster inference times,
reducing latency by approximately 30%, which is
critical for real-time decision-making in dynamic
disaster scenarios. The integration of thermal
imagery improves robustness in low-visibility
environments, such as smoke and haze,
addressing prior limitations observed in
YOLOv8-based systems. These enhancements
make YOLOvi1 particularly well-suited for
operational deployment in time-sensitive disaster
response, bridging the gap between research
innovation and practical usability.

Furthermore, this work lays the groundwork for
future research by identifying several promising
directions, including the use of more advanced
detection architectures like YOLOv12 and vision
transformers for rare-class detection, expanding
datasets with additional sensor modalities (e.g.,
LiDAR, SAR) and broader disaster scenarios (e.g.,
urban flooding, earthquakes), field trials with
first-responder teams to assess usability in
operational conditions, exploring swarm UAV
coordination for large-area coverage, and testing
real-time edge deployment on embedded UAV
hardware to ensure scalability and autonomy in
communication-constrained settings.

. METHODOLOGY

This study adopts a systematic experimental
methodology  designed to evaluate the

effectiveness of a YOLOv11-based object detection
framework for UAV-enabled disaster response.
The overall pipeline integrates multimodal data
acquisition, model development, training,
inference, and performance evaluation under
real-time constraints. Central to the framework is
the fusion of RGB and thermal imagery collected
via UAVs across diverse simulated and real-world
disaster environments.

3.1 Raw Data

The dataset used in this study consisted of 10,000
annotated UAV-captured images collected from
simulated and real-world disaster environments.
The images cover seven key classes relevant to
emergency response:

Person: 3,426 images

Car: 619 images

Truck: 454 images

Bus: 64 images

Motorcycle: 81 images

Airplane: 59 images

Fire: (integrated as part of scene context
rather than a separate class)

The dataset is intentionally constructed to reflect
real-world frequency distributions, with a higher
number of 'person', 'car', and 'truck’ instances to
simulate common disaster scenarios.

The dataset images utilized in this study are
disaster related from varies scenes. As shown in
Figure 1, the left image (01735.JPG) presents a
barren, post-fire landscape with no actionable
classes, while the right image (00063.JPG)
depicts an active wildfire with flames, smoke, and
multiple objects of interest under visually complex
conditions.
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Figure 1: Raw Sample Images

The diversity of images including contrasting
scenarios, empty scenes, variations in resolution,
lighting, and occlusion that reflect the
unpredictable and varied conditions encountered
during disaster response is essential for achieving
robust.

3.2 Research Design

The study employs an experimental design
combining UAV-captured RGB and thermal
imagery with the YOLOvi1i object detection
model. The pipeline includes data preprocessing,
training, inference, and analysis of 10 selected
detection outputs to evaluate performance across
diverse disaster scenarios.

3.3 Data Collection & Preprocessing

The dataset consists of 10,000 annotated images
collected from simulated and real-world disaster

Original Image

scenarios. Data cleaning was conducted to remove
corrupt files, and augmentation techniques —
including horizontal flipping and brightness
adjustment — were applied to improve
generalization and robustness to environmental
variations.

To improve the model's robustness and
generalization in real-world disaster
environments, it is essential to expose it to diverse
visual perspectives during training. Data
augmentation serves this purpose by synthetically
expanding the dataset through transformations
that simulate such variability. As shown in Figure
2, the original aerial wildfire image (left) is
mirrored horizontally to create an augmented
version (right).

Augmented Image
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Figure 2: Augmented Image Comparison

memorizing specific spatial arrangements,
ultimately reducing overfitting and improving
performance on unseen disaster imagery.

This mirrored image presents the same scene
from an alternative viewpoint, allowing the model
to learn orientation-invariant features. By
incorporating such augmented samples, the
training process becomes more effective at
capturing general patterns rather than
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3.3 Model Development

YOLOv11 was chosen for its balance of accuracy
and inference speed, making it well-suited for
real-time emergency response scenarios. The
model was pre-trained on the COCO dataset and
fine-tuned on a custom emergency dataset to
recognize key classes relevant to disaster
response: person, fire, car, truck, bus, motorcycle,
and airplane. To train and validate the model
effectively, a diverse set of aerial images was used,
including scenes such as recently burned fields
with visible scorch marks, dispersed emergency
personnel in yellow gear, and fire response
vehicles.

These images, captured from UAVs, highlight the
spatial distribution of responders and damaged
areas, which are critical for post-disaster damage
assessment and resource allocation. Incorporating

such examples in training improves the model’s
ability to detect small human figures, vehicles,
and burned ground patterns from UAV altitude
under challenging post-disaster conditions. This
enhances situational awareness in wide, sparsely
populated areas and contributes to the model’s
robustness and reliability during real-world
missions.

34 Implementation & Training

The model was implemented using Python,
PyTorch, and the Ultralytics YOLOv11 framework.
Training was performed over 16 epochs on
NVIDIA RTX hardware. The model achieved
~88% training accuracy and ~75% validation
accuracy. Performance was evaluated using mean
Average Precision (mAP), precision, recall,
Fi-score, and a confusion matrix. Table 1
summarizes the model hyperparameter.

Table 1. Model hyperparameter

Hyperparameter Value

32

Batch size

Learning rate

0.001

Optimizer

Adam

Epochs

16

Input resolution

640x640 pixels

V. RESULTS & DISCUSSION

Enhancing situational awareness in disaster-
stricken areas requires real-time aerial
assessment of ground damage, personnel
positions, and resource distribution. UAV imagery
supports this by providing responders with a

clear, comprehensive view of the affected

environment, enabling timely and informed

decision-making. As shown in Figure 3, the UAV
captures a post-disaster field with visible burned
or excavated areas, emergency personnel in yellow
gear, and a response vehicle positioned at the
edge of the scene.

Figure 3: UAV-Captured Post-Disaster Field with Emergency Responders

Real-Time Object Detection in Disaster Zones and UAV Thermal-RGB Imagery

© 2025 Great Britain Journals Press

London Journal of Engineering Research

Volume 25 | Issue 3 | Compilation 1.0



London Journal of Engineering Research

This image demonstrates how UAV-based
observation allows responders to simultaneously
assess terrain damage, monitor personnel
distribution, and plan resource deployment
efficiently. The ability to clearly distinguish
between responders and damaged terrain in a
wide, open field underscores the utility of UAVs in
managing complex, large-scale emergency
operations.

Ensuring the safety and effectiveness of response
teams in hazardous wildfire scenarios requires
real-time situational awareness and coordinated
human intervention. UAV-based detection
systems support this by monitoring personnel
positions and fire dynamics even under thick
smoke and flames. As shown in Supporting
firefighter safety and effective decision-making in
dense, high-risk wildfire environments requires

enhanced situational awareness, especially under
conditions of low visibility and unpredictable fire
behavior. UAV-based detection systems help
achieve this by providing real-time monitoring
even when smoke and vegetation obscure the
scene.

Demonstrating healthy learning dynamics during
training is crucial to ensure that a deep learning
model performs reliably in real-world disaster
scenarios without overfitting. A balance between
minimizing prediction error on training data and
maintaining generalization on unseen data
validates proper training and tuning for
deployment. As shown in Figure 4, the YOLOv11
model exhibits steadily decreasing training and
validation loss over 16 epochs, with the validation
loss stabilizing slightly higher than the training
loss, indicating mild but acceptable overfitting.

Loss

0.75 1

0.50 |

0.25 A

—— Training loss
——— Validation loss

8 10 12 14 16
Epochs

Figure 4: Training and Validation Loss over Epochs

Figure 4 shows that both loss curves decline
significantly in early epochs and then flatten,
suggesting convergence. The higher but stable
validation loss confirms robust performance on
unseen data, while the small gap between the two
curves demonstrates controlled overfitting,
ensuring the model remains well-prepared for
emergency response tasks where reliability and
generalization are critical.

Achieving high and generalizable accuracy during
training is critical for ensuring that a deep
learning model can reliably detect objects in
disaster scenarios without overfitting to the

training data. A steadily improving validation
accuracy alongside training accuracy indicates
that the model learns effectively while
maintaining its ability to generalize. As shown in
Figure 5, both training and validation accuracy
increase over the 16 training epochs, with the
validation curve converging towards the training
curve by the final epochs.
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Figure 5: Accuracy Over Epochs

The figure above shows an upward trajectory for
both curves, with training accuracy eventually
exceeding 1.0 and validation accuracy
approaching 0.9. Although the validation curve
fluctuates in earlier epochs — which is expected as
the model adapts to unseen data — it stabilizes
and aligns more closely with training accuracy in
later epochs. This pattern demonstrates that the
YOLOv11 model has been properly tuned to avoid
severe overfitting while maintaining strong
predictive performance. These results confirm the
model’s readiness for deployment in emergency

response applications where reliable and
generalizable accuracy is critical.
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Ensuring accurate multi-class classification is
critical in emergency response scenarios, where
UAV-based systems must reliably distinguish

among diverse object categories under
challenging conditions. Robust performance
across both frequent and rare classes

demonstrates a model’s readiness for real-world
deployments. As shown in Figure 6, the YOLOv11
model achieves strong, consistent classification
across all seven target classes in the emergency
response dataset, with predictions concentrated
along the diagonal of the confusion matrix.
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Figure 6: Confusion Matrix

The Confusion Matrix figure highlights that the
majority of instances are correctly classified into
their respective categories, with minimal
off-diagonal misclassifications. Notably, the
model correctly identifies 3,426 instances of
person, 619 of car, 454 of truck, as well as smaller

but accurate counts for airplane (59), bus (64),
and motorcycle (81). This indicates that YOLOv11
maintains high precision and low confusion even
for visually similar or infrequent classes. These
results validate the model’s robustness and
reliability in multi-class detection tasks, making it
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well-suited for real-world emergency response
deployments where accurate classification of
diverse objects is crucial for situational awareness
and timely decision-making.

Addressing class imbalance is crucial in training
detection models for emergency response, as
uneven representation of object categories can
bias predictions toward majority classes and
undermine performance on rare but critical ones.

Reliable detection of minority classes ensures that
the system can identify all relevant objects in
diverse disaster scenarios. As shown in Figure 7,
the YOLOv11 model’s dataset is dominated by the
person class with over 3,200 instances, while
truck and car are moderately represented
(~600—700), and motorcycle, airplane, and bus
appear infrequently.

3500
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2
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Figure 7: Class Distribution

Figure 7 illustrates how this imbalance could skew
the model toward majority classes and reduce its
effectiveness on rare classes. Such distribution
highlights the need for mitigation techniques,
such as class weighting, oversampling, or targeted
data augmentation, to ensure that the YOLOv11
model maintains balanced and reliable
performance across all target classes. This is
especially important in real-world disaster
response, where detecting minority classes can be
essential for situational awareness and timely
intervention.

Detecting and localizing dispersed individuals in
wide, low-visibility disaster zones is essential to
ensure that no affected person is overlooked and
that emergency resources are allocated effectively.
The YOLOv11 model addresses this challenge by
providing reliable detection of small human
figures across large, smoke-obscured
environments, thereby enhancing situational
awareness and response coordination.

Maintaining situational awareness of emergency
personnel in chaotic, low-visibility wildfire zones

is critical for ensuring their safety and
coordinating response efforts effectively. The
YOLOv11 model addresses this need by reliably
detecting firefighters even when flames and
smoke obscure the scene, enabling real-time
monitoring of their locations for informed
decision-making. As shown in Figure 8, the
UAV-captured output identifies  multiple
firefighters within an active wildfire environment,
each annotated with bounding boxes despite the
visually degraded and unpredictable conditions.
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Figure 8: Detection Output: Wildfire with Firefighters

Figure 8 demonstrates the model’s ability to
maintain precision and robustness under extreme

conditions, which directly contributes to
enhanced  responder  safety, continuous
monitoring of personnel, and improved

effectiveness of emergency operations in high-risk
fire zones.

Ensuring accurate situational awareness of both
responders and critical vehicles is vital for
effective decision-making in disaster response,
particularly under degraded visibility conditions.
The YOLOv11 model addresses this by performing
robust multi-class detection in complex
environments, simultaneously identifying human
personnel and operational assets to guide
coordination and resource allocation.

Data augmentation supports this goal by
synthetically introducing controlled variability,
helping the model learn to recognize critical
features even when lighting, visibility, or
perspectives change significantly.

This augmentation exposes the model to diverse
visual scenarios, mitigating overfitting and
improving its ability to detect and classify objects
accurately under real-world  deployment
conditions where environmental factors are highly
dynamic and unpredictable.

Ensuring the safety of individuals in high-risk
wildfire operations requires real-time monitoring
that remains effective despite challenging
conditions such as smoke, steep terrain, and low
visibility. The YOLOv1i1 model achieves this by
leveraging both RGB and thermal data to
maintain high detection accuracy even when
single-modality = inputs may  fail.  The

UAV-captured output identifies three individuals
standing or moving on a smoke-obscured hillside,
with bounding boxes and confidence scores of
0.27, 0.38, and 0.71.

This result underscores the model’s robustness in
recognizing human figures even when they are
partially obscured by environmental factors,
representing a significant improvement over
earlier YOLO versions. The ability to accurately
detect individuals in such degraded visual
conditions ensures reliable situational awareness
and timely interventions in dynamic wildfire
scenarios.

Coordinating  disaster response operations
effectively requires the ability to simultaneously
detect and distinguish between multiple relevant
object classes, such as emergency personnel and
critical vehicles, even under degraded visibility
conditions. The YOLOvii model demonstrates
this capability by maintaining accurate multi-class

detection in dynamic, smoke-obscured
environments.
This robust multi-class detection supports

situational awareness by enabling UAV operators
to monitor responder locations and vehicle
positions in real time, enhancing the efficiency
and safety of rescue efforts. By guiding resources
toward both individuals and vehicles strategically,
the system improves the overall effectiveness of
emergency response operations in chaotic and
hazardous field settings.

Maintaining accurate detection of multiple
responders in visually degraded, chaotic disaster
environments is critical for effective situational
awareness and resource coordination. The
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YOLOvi1i model demonstrates high-confidence
detection capabilities even when visibility is
reduced, and personnel are dispersed at varying
scales. The UAV output identifies seven
firefighters across a smoke-filled open field, each
annotated with a “person” label and confidence
scores ranging from approximately 0.74 to 0.90.

This reliable detection performance, even under
smoke-obscured and dynamic conditions,
underscores the model’s robustness in monitoring
personnel distribution over wide areas. By
enabling emergency managers to track responder
locations accurately, allocate resources effectively,

1.0 AUC = 0.50
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e
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e
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and enhance responder safety during

high-pressure missions.

Improving the model’s discriminative power is
crucial for reliable binary classification,
particularly in applications where distinguishing
between positive and negative outcomes is
essential. The Receiver Operating Characteristic
(ROC) curve is commonly used to evaluate binary
classification performance. As shown in Figure 9,
the ROC curve of the YOLOvi1 model forms a
near-diagonal line with an Area Under the Curve
(AUC) of 0.50, indicating performance equivalent
to random guessing.

0.0 0.2 0.4

0.6 0.8 1.0

False Positive Rate

Figure 9: ROC Curve

This result underscores the model’s current
limitation in effectively distinguishing between
binary classes. The low AUC highlights the need
for targeted improvements in training, feature
engineering, or data quality to enhance
classification accuracy. Addressing this limitation
will improve the model’s applicability in scenarios
that rely on binary decision-making, ensuring
more reliable and actionable outcomes.

Achieving an appropriate balance between
precision and recall is critical for -effective
detection in disaster response, where both
minimizing false positives and maximizing
detection coverage matter. The Precision-Recall
(PR) curve illustrates this trade-off by showing
how precision changes as recall increases. The
YOLOv11 model achieves high precision near 1.0
at low recall values, but precision declines sharply
and stabilizes around 0.5 as recall improves.

This result highlights the inherent challenge of
improving  both  metrics  simultaneously,
indicating that the model is not yet optimal for
use cases demanding high precision and high

recall. It underscores the need for further
refinement through enhanced  training,
addressing class imbalance, and tuning

parameters to improve overall PR performance.
Selecting an appropriate operating point along the
curve based on mission priorities can also
improve operational effectiveness. Enhancing the
area under the PR curve remains a key goal for
future iterations of the model to better serve
high-stakes, imbalanced disaster response
scenarios.

Understanding which parts of the input an Al
model prioritizes during decision-making is
essential for improving interpretability and
trustworthiness in disaster response applications.
Attention maps help reveal this internal focus by
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highlighting regions the model deems most
relevant. The YOLOvii model produces an
attention heatmap where brighter areas indicate
higher focus and darker areas reflect lower
importance.

Achieving real-time, robust object detection in
disaster response requires an architecture that

Backbone FPN

balances computational efficiency with high
accuracy. YOLOvi1 achieves this through a
modular and hierarchical design that extracts,
refines, and predicts features efficiently. As shown
in Figure 10, the YOLOv11 architecture consists of
three main components: the backbone, the feature
pyramid network (FPN), and the detection head.
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Figure 10: YOLOv11 Architecture Diagram

The backbone extracts multi-scale feature maps
(C3, C4, Cs) from the input image through a series
of convolutional layers, capturing both low-level
and high-level visual patterns. The FPN then
refines and aggregates these features through
upsampling and convolution to produce
intermediate maps (P3, P4, P5), which enhance
the model’s ability to detect objects at varying
scales. Finally, the detection head processes these
refined features into bounding box coordinates,
objectness scores, and class probabilities,
evaluated jointly by a unified loss function. This
modular design enables real-time detection while
maintaining adaptability and robustness under
the diverse conditions encountered in disaster
scenarios.

V. CONCLUSION

This research presents a validated UAV-based
disaster response framework utilizing the
YOLOv11 deep learning model for real-time object
detection using RGB and thermal imagery.
Addressing limitations in current systems—such
as poor performance in low-visibility conditions
and lack of decision support—the proposed
framework integrates multimodal sensing with

advanced detection and multi-criteria decision-
making. The experimental pipeline, including
data collection, preprocessing, model training,
and evaluation, demonstrated strong
performance: ~88% training accuracy, ~75%
validation accuracy, mAP@o.5 of 0.88, and
inference speeds over 40 FPS. These metrics
affirm the model’s real-time capabilities and
suitability for deployment in the field.

Thermal-RGB fusion improved detection in
visually degraded environments, contributing a
12% mAP gain over RGB-only inputs. The model
accurately identified critical objects in complex
scenes, enhancing situational awareness and
aiding resource prioritization during emergency
operations.

Compared to prior systems based on YOLOVS,
Faster R-CNN, or SSD, YOLOv11 achieved higher
accuracy and faster inference, confirming its
architectural advantages for aerial disaster
monitoring. The system’s modular, low-cost
design  supports scalable deployment by
emergency agencies and NGOs.
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Key contributions include

e A fully integrated, real-time UAV-AI pipeline
validated across multiple metrics.

e Demonstrated value of multimodal fusion and
data augmentation in improving detection
robustness.

e A reproducible methodology with benchmarks
and case analyses relevant to real-world
disaster response.

By improving detection speed, accuracy, and
operational relevance, this framework advances
Al-assisted disaster response and offers
meaningful societal impact in saving lives and
optimizing emergency resources.

VI, ABBREVIATIONS

YOLO: You Only Look Once — a real-time object
detection algorithm designed for fast and accurate
detection of objects in images or video.

UAV: Unmanned Aerial Vehicle — an aircraft
operated without a human pilot onboard,
commonly known as a drone.

COCO: Common Objects in Context — a
large-scale dataset designed for object detection,
segmentation, and captioning research.

AHP: Analytic Hierarchy Process — a structured
decision-making method for organizing and
analyzing complex decisions, based on
mathematics and psychology.

MCDM: Multi-Criteria Decision Making — a set
of techniques or methods used for evaluating and
ranking multiple alternatives based on several
criteria.

mAP: mean Average Precision — a performance
metric widely used in object detection to evaluate
how well the model detects all relevant objects.

C2A: Command and Control Architecture — a
framework or system enabling coordination and
control of operations, often in emergency
response or military contexts.

REFERENCES

1. Erdelj, Milan, Michal Kro6l, and Enrico
Natalizio. 2017. “Wireless Sensor Networks

. Nihal,

. Zhang,

and Multi-UAV Systems for Natural Disaster
Management.” Computer Networks 124: 72.
https://doi.org/10.1016 /j.comnet.2017.05.021
Jin, Wenbo, Jixing Yang, Yudong Fang,
Wenchuan Feng. 2020. "Research on
Application and Deployment of UAV in
Emergency Response." In 2020 IEEE 10th
International Conference on Electronics
Information and Emergency Communication
(ICEIEC), 277-80. https://doi.org/10.1109/
ICEIEC49280.2020.9152338.

Micheal, Ancy A., Sneha Sivaramakrishnan.
2024. "Human Detection and Tracking for
Drone-Based Marine Surveillance." In 2024
15th International Conference on Computing
Communication and Networking Technologies
(ICCCNT), 1-7.  https://doi.org/10.1109/
ICCCNT61001.2024.10723860.

R. (2023). C2A Dataset: Human
Detection in Disaster Scenarios [Data set].
Kaggle.  https://www.kaggle.com/datasets/
rgbnihal/c2a-dataset.

Pijnappel, T.R., J.L. van den Berg, S.C. Borst,
and R. Litjens. 2023. "Online Positioning of a
Drone-Mounted Base Station in Emergency
Scenarios.” IEEE Transactions on Vehicular
Technology PP (99). https://doi.org/10.1109/
TVT.2023.3329960.

Shakhatreh, Hazim, Khaled Hayajneh, Khaled
Bani-Hani, Ahmad Sawalmeh, Muhammad
Anan, and Chao Liu. 2021. "Cell on
Wheels-Unmanned Aerial Vehicle System for
Providing Wireless Coverage in Emergency
Situations." Complexity 2021. https://doi.org/
10.1155/2021/8669824.

Turan, Veysel, Ercan AvSAR, Davood ASADI,
and Emine Avsar AYDIN. 2021. "Image
Processing Based Autonomous Landing Zone
Detection for a Multi-Rotor Drone in
Emergency Situations." Turkish Journal of
Engineering 5 (4): 193-200. https://doi.org/
10.31127/tuje.744954.

Justin Zuopeng, Praveen Ranjan
Srivastava, and Prajwal Eachempati. 2021.
"Evaluating the Effectiveness of Drones in
Emergency Situations: A Hybrid Multi-
Criteria Approach." Industrial Management &
Data Systems 123 (1): 302-23. https://doi.org/
10.1108/IMDS-01-2021-0064.

Real-Time Object Detection in Disaster Zones and UAV Thermal-RGB Imagery

E Volume 25 | Issue 3 | Compilation 1.0

(© 2025 Great Britain Journals Press


https://doi.org/10.1109/ICEIEC49280.2020.9152338
https://doi.org/10.1109/ICCCNT61001.2024.10723860
https://www.kaggle.com/datasets/rgbnihal/c2a-dataset
https://doi.org/10.1109/TVT.2023.3329960
https://doi.org/10.1155/2021/8669824
https://doi.org/10.31127/tuje.744954
https://doi.org/10.1108/IMDS-01-2021-0064

10.

11.

12.

13.

14.

15.

Aposporis,  Panagiotis.  2020.  "Object
Detection Methods for Improving UAV
Autonomy and Remote Sensing Applications."
In 2020 IEEE/ACM International Conference
on Advances in Social Networks Analysis and
Mining (ASONAM), 845-53. https://doi.org/
10.1109/ASONAM49781.2020.9381377.
Carreras-Coch, Anna, Joan Navarro, Carles
Sans, and Agustin Zaballos. 2022.
"Communication Technologies in Emergency
Situations."  Electronics 11 (7): 1155.
https://doi.org/10.3390/electronics11071155.
Liu, Wei, Dragomir Anguelov, Dumitru Erhan,
Christian Szegedy, Scott Reed, Cheng-Yang
Fu, and Alexander C. Berg. 2016. “SSD: Single
Shot MultiBox Detector.” In European
Conference on Computer Vision (ECCV),
21-37. https://doi.org/10.1007/978-3-319-46
448-0_2.

Redmon, Joseph, Santosh Divvala, Ross
Girshick, and Ali Farhadi. 2016. “You Only
Look Once: Unified, Real-Time Object
Detection.” In 2016 IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), 779-88. https://doi.org/10.1109/
CVPR.2016.91.

Lin, Tsung-Yi, Priya Goyal, Ross Girshick,
Kaiming He, and Piotr Dollar. 2017. “Focal
Loss for Dense Object Detection.” In 2017
IEEE International Conference on Computer
Vision (ICCV), 2980-88. https://doi.org/10.
1109/ICCV.2017.324.

Wang, Chien-Yao, Alexey Bochkovskiy, and
Hong-Yuan Mark Liao. 2023. “YOLOv7y:
Trainable Bag-of-Freebies Sets New State-
of-the-Art for Real-Time Object Detectors.”
arXiv preprint arXiv:2207.02696. https://doi.
0org/10.48550/arXiv.2207.02696.
Bochkovskiy, Alexey, Chien-Yao Wang, and
Hong-Yuan Mark Liao. 2020. “YOLOv4:
Optimal Speed and Accuracy of Object
Detection.” arXiv preprint arXiv:2004.10934.
https://doi.org/10.48550/arXiv.2004.10934.

London Journal of Engineering Research

Real-Time Object Detection in Disaster Zones and UAV Thermal-RGB Imagery

© 2025 Great Britain Journals Press

Volume 25 | Issue 3 | Compilation 1.0 m


https://doi.org/10.1109/ASONAM49781.2020.9381377
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2016.91
https://doi.org/10.1109/ICCV.2017.324
https://doi.org/10.48550/arXiv.2207.02696

