
1 6 U K

Powered by TCPDF (www.tcpdf.org)

London
Journals Press

LJP

Scan to know paper details and
author's profile

On enforcing relational constraints in
MatBase

Christian Mancas,Valentina Dorobantu

ABSTRACT

MatBase is a very powerful database management system based not only on the relational data model, but
also on the elementary mathematical, entity-relationship, and Datalog logic ones. This paper briefly
introduces MatBase and the elementary mathematical data model, after which is focused on the five
relational constraint types and their enforcement in relational database management systems, as well as in
MatBase.

Keywords: relational data model, domain constraint, not null constraint, unique key constraint, referential integrity
constraint, tuple constraint, elementary mathematical data model, MatBase.

Classification: H.2.6 H.2
Language: English

LJP Copyright ID: 206059
ISBN 10: 1537631683
ISBN 13: 978-1537631684

London Journal of Research in Computer Science and Technology

Volume 17 | Issue 1 | Compilation 1.0

© 2017. Christian Mancas,Valentina Dorobantu. This is a research/review paper, distributed under the terms of the Creative Commons
Attribution-Noncommercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all non-commercial use,
distribution, and reproduction in any medium, provided the original work is properly cited.

http://www.tcpdf.org

On Enforcing Relational Constraints in MatBase
Valentina Dorobantuα & Christian Mancas σ

__

I. ABSTRACT

MatBase is a very powerful database manage-
ment system based not only on the relational
data model, but also on the elementary
mathematical, entity-relationship, and Datalog
logic ones. This paper briefly introduces MatBase
and the elementary mathematical data model,
after which is focused on the five relational
constraint types and their enforcement in
relational database management systems, as
well as in MatBase.

Keywords: relational data model, domain
constraint, not null constraint, unique key
constraint, referential integrity constraint, tuple
constraint, elementary mathematical data model,
MatBase.
Author α σ: Mathematics and Computer Science
Dept., Ovidius University, Constanta, Romania.

II. INTRODUCTION

This first section briefly presents MatBase, the
Elementary Mathematical Data Model (EMDM),
the five relational constraint types ((co-) domain/
range, not null, unique keys, referential integrity/
foreign keys, and tuple/check) and their
enforcement in the Relational Database
Management Systems (RDBMSes), as well as
related and further work.

The second section is the core of the paper,
introducing the ways in which MatBase is
enforcing and extending the five relational
constraint types. The paper ends with conclusions
and references.

2.1 MatBase

MatBase [1-5] is a powerful prototype multi-
model, multi-user, and multi-language knowledge
and data (KD) base management system
(KDBMS) that currently has two versions: one in
MS Access 2015 and the other in MS SQL Server
2015 and C#. MatBase provides four data models:
the (Elementary) Mathematical ((E) MDM) [1,
6-11], the Relational (RDM) [10, 12, 13], the
Entity- Relationship (E-RDM) [10, 13, 14], and the
Datalogᆨ [11, 13] based Logic (DLᆨDM) ones.

Its main and most powerful interface is the (E)
MDM one (which includes the DLᆨDM one),
where users manage sets, functions, and
constraints that MatBase is automatically
translating into corresponding tables, columns,
and constraints (but users may also manage
Datalogᆨ inference rules and programs). For the
relational constraints (see section 2.3), MatBase
mainly uses the corresponding ones provided by
MS Access and SQL Server. For the non-relational
ones, it automatically generates embedded and/or
extended SQL code into forms automatically built
upon the corresponding tables.

MatBase also provides an RDM interface, where,
dually, users manage tables, columns, and (only
relational) constraints and it automatically
generates corresponding sets, functions, and
constraints.

Finally, MatBase also provides an E-RDM
interface, where users manage E-R diagrams
(E-RDs) and it automatically generates
corresponding sets, functions, and constraints, as
well as corresponding tables, columns, and
constraints. Dually, users may ask in both
(E)MDM and RDM interfaces generation of
E-RDs for any set and its related ones on n nodes

Volume 17 | Issue 1 | Compilation 1.0© 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

39

distance from it, n being a natural parameter, or
the full db scheme.

2.2 The Elementary Mathematical Data Model

(E)MDM schemes are quadruples made out of a
finite nonempty collection of sets S partially
ordered by inclusion, a finite nonempty set of
mappings M defined on and taking values from
sets of S, a finite nonempty set of constraints C,
and a finite set of Datalogᆨprograms P associated
to the sets of S and mappings of M. Conventional
database (db) schemas are triples <S, M, C >);
when P is non- empty, the corresponding db is a
deterministic deductive one, so a knowledge base.

S is partitioned into the following four blocks:
object, value, system, and computed sets. Object
ones are partitioned into entity (i.e. atomic) and
relationship (i.e. non-functional math relations
immune to their domain permutations). Value
ones are subsets of (programming) data types.
System sets include at least the data types, the
empty set, and a distinguished countable set
NULLS of null values. Computed sets are
obtained from all other types of sets by using
semi-naïve sets, functions, and relations algebra
operators (e.g. union, difference, intersection,
etc.).

All mappings in M are defined either on object
sets or on computed sets based only on object
ones. M is partitioned into the following four
blocks: attributes, structural functions, system,
and computed mappings. Attributes are taking
values from value sets, while structural functions
from object ones, both possibly combined with
NULLS. System mappings include canonical
projections, injections, and unity mappings.
Computed mappings are obtained from all other
types of mappings by using semi-naïve sets,
functions, and relations algebra operators (e.g.
composition, (Cartesian) product, etc.).

C is partitioned into the following four blocks: set,
dyadic relation, mapping, and object constraints.
(E)MDM has a rich panoply of constraint types:
currently, it has 56, out of which 30 fundamental

and 26 derived ones (see everyday life examples
for all of them in [10, 11]). The main reason
behind its introduction is that neither RDM nor
E-RDM constraint types are not at all enough to
guarantee db instances plausibility. For example,
even such a simple constraint as “the capital city
of any country should belong to that country” is
not expressible in either RDM or E-RDM, whereas
in (E)MDM it is, either as Country o CapitalCity
reflexive or, equivalently, as Country o Capital

City = 1CITIES.

2.3 The 5 Relational Constraint Types and Their
Enforcement in RDBMSes

RDM provides five types of constraints (i.e. closed
first order logic calculus (FOLC) with equality
formulae) that are embedded in all Relational
Database Management Systems (RDBMSes) for
enforcing these business rules, namely: domain
(range), not null (function total definition), keys
(uniqueness), typed inclusion (foreign keys,
referential integrity), and tuple (check).

Tables storing fundamental data should make
heavy use of them. Those storing temporary data
should not have constraints (except for debugging
purposes), as their enforcement costs both disk
space and, especially, processing time. In what
follows we consider only fundamental data tables.

Domain constraints restrict for columns the
corresponding data types to some plausible
subset. For example, to a function BirthDate :
EMPLOYEES → [1/1/1900, SysDate() – 18 years]
corresponds a DATE column BirthDate to which
you have to add the domain constraint “between
‘1/1/1900‘ and SysDate() – 18 years“. Obviously,
without it users might store even highly
implausible data, as DATE starts, for example, in
MS Access with 1/1/100, in MS SQL Server and
IBM DB/2 with 1/1/1, in Oracle with 1/1/4712 BC,
and they all end on 31/12/9999: why letting users
(and it doesn’t matter whether by mistake or on
purpose, to test your db design skills) entering
data on employees born some 2000 years ago or
that will be born only some 7000 years from now?

Volume 17 | Issue 1 | Compilation 1.0 © 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

40

Note that, mathematically, this is, in fact, a
co-domain definition, while in RDBMSes, as the
corresponding SQL syntax is “CHECK BirthDate
between ‘1/1/1900‘ and SysDate() – 18 years“, it is
generally called a check constraint.

A fundamental best practice rule is that for any
column of type numeric (including DATE, which
is also stored numerically) you should add a
corresponding domain constraint. String
character columns might also need such
constraints. For example, to column Sex of table
EMPLOYEES you should add the constraint
“CHECK Sex in (‘F’, ‘M’)”.

Not null constraints are, in fact, a
particularization of the existence constraints:
given any two columns f and g of a same table T,
such a constraint is denoted by f ⊢ g and has the
meaning “whenever f is not null, g should be not
null too”. For example, in a library db, in table
ITEMS you should enforce both BorrowDate ⊢
Borrower (whenever an item was borrowed, you
should also know to whom) and Borrower ⊢
BorrowDate (whenever somebody borrowed an
item, you should also know when).

In the particular case when f is void, according to
FOLC, the meaning of such a constraint is that g
should never accept null values and this is why
they are called not null constraints.
Unfortunately, no RDBMS, except for MatBase, is
providing existence, but only not null constraints.
In SQL, they are enforced by declaring the
corresponding column as NOT NULL.

A fundamental best practice rule is that any table
should have at least one column, except for the
surrogate key one, not accepting nulls.

Beware of notational confusions: Oracle, for
example, considers NOT NULL constraints as
being of type CHECK too.

Mathematically, functions are totally defined, so,
for example, the correct definition of CapitalCity,
if knowing capitals of all countries should not be
compulsory in a db, would be CapitalCity :

COUNTRIES → CITIES ∪ NULLS. In fact, as in
dbs the vast majority of columns accept nulls,
(E)MDM uses the dual notation that never
explicitly uses NULLS, considering totality an
optional constraint. For example, CapitalCity :
COUNTRIES → CITIES and CountryName :
COUNTRIES → ASCII(255), total mean that
CapitalCity accepts nulls, whereas CountryName
does not.

Key constraints are rejecting any attempt to
duplicate data on corresponding columns of a
table. For example, as there may not be two
countries with a same name in the world,
CountryName should be declared as UNIQUE in
table COUNTRIES; similarly, as there may not be
two states of a same country having same names
the pair (StateName, Country) should also be
declared as UNIQUE in table STATES.

RDBMSes enforce key constraints with unique
indexes. Unfortunately, besides arity limitations
(e.g. in current versions of MS Access a key may
contain at most 10 columns, 16 in MS SQL Server,
32 in Oracle, 64 in IBM DB/2), RDBMSes do not
accept in keys columns of some data types (e.g.
long texts, OLE etc.) and some of them (e.g. MS
SQL Server) do not accept columns having more
than one null value.

Mathematically, a key is either a one-to-one
function or a minimally one-to-one function
product. A not minimally one-to-one function
product is called superkey both in RDM and
(E)MDM. For example, (Population, StateName,
Country) is a superkey in STATES. Unfortunately
(as not only conceptually superkeys are not
minimal, but they also waste unneeded both disk
space and enforcement time), all RDBMSes, again
except for MatBase, accept enforcing both keys
and superkeys.

Tables may have a primary key, which is a key
not accepting nulls. Most RDBMSes provide a
surrogate key data type (called COUNTER,
GENERATED, AUTONUMBER etc.), i.e. fixed
point numeric, generally with auto-numbering,

Volume 17 | Issue 1 | Compilation 1.0© 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

41

having no other semantics but unique row
identification.

Other fundamental best practice rules are:

− Every table should have a surrogate primary
key, with auto-numbering whenever it is not
also a foreign key (which is needed for tables
corresponding to subsets, e.g. for DRIVERS

⊆ EMPLOYEES);
− Every table should have all keys existing in

the corresponding actual subuniverse.

A referential integrity constraint restricts the
values that may be taken by a column or set of
columns to those taken by another column or set
of columns, respectively. For example, column
Country from table STATES should only take
values from those stored by the surrogate primary
key column ID from table COUNTRIES. Columns
to which such constraints are associated are called
foreign keys; for example, Country above is a
foreign key.

The SQL syntax for such constraints, exemplified
for Country, is “FOREIGN KEY (Country)
REFERENCES COUNTRIES”, where whenever
the foreign key references the primary key the
latter needs not be explicitly mentioned.
Mathematically, if f references g, then Im(f) ⊆
Im(g), where the image of a function, denoted Im,
is the set of the values it is taking.

Another fundamental best practice rule is that
every foreign key references a surrogate primary
key.

Finally, tuple constraints have no generally
accepted definition; generalizing corresponding
RDBMS implementations, they are constraints
relating several columns of a same table, e.g., in
EMPLOYEES, BirthDate ≤ HireDate ≤ Passed
Away Date (written by notational abuse as
formulas of a propositional calculus, but being in
fact FOLC closed formulas with only one variable
occurrence universally quantified; e.g. the one
above is a shortcut for (∀x∈EMPLOYEES)
(BirthDate(x) ≤ HireDate(x) ≤ PassedAway
Date(x))).

2.4 Related and Further Work

Oracle constraint enforcement is presented in
Chapter 6 of [15]. Corresponding data for the MS
SQL Server can be found in [16]. For MS Access,
[17] presents the SQL CONSTRAINT clause, while
[18] the ADO API.

A planned improvement of MatBase is to allow
definition of existence constraints for computed
functions too, as well as modifying existence
constraints.

Last, but not least, further work will be done for
providing MatBase versions for Oracle, IBM DB2,
MySQL, and PostgreSQL in a next step.

III. ENFORCING RELATIONAL
CONSTRAINTS IN MATBASE

MatBase not only enforces all five relational
constraint types, but it does so more elegantly and
powerful than any other DBMS. As most of the
systems, it enforces constraints, regardless of
type, only if the current db instance satisfies them.

3.1 Domain constraints

Both MatBase versions establish data types based
on the corresponding co-domains. For example,
both NAT (the naturals) and INT (the integers)
are implemented as integers (unsigned for NAT).
Corresponding subtypes are chosen based on the
DomCnstr (Domain Constraint) values, if any. For
example, a co-domain NAT with DomCnstr = 2
(i.e. NAT(2)) is implemented as the subtype Byte,
as it can only store naturals less than 100. When
no such value is specified, the largest
corresponding subtype is selected; for example,
INT with a null value in DomCnstr is
implemented in Access as Long Integer.

In its MS Access version, as there is no SQL
CHECK clause, MatBase uses DAO, just like
Access does when enforcing its Graphic User
Interface (GUI) Validation Rule for columns. In
its MS SQL Server version, MatBase uses the SQL
CHECK clause.

Volume 17 | Issue 1 | Compilation 1.0 © 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

42

In its GUI, namely in its FUNCTIONS form, you
can specify domain constraints other than with
DomCnstr by using either MinValue and/or
MaxValue or user-defined value sets as
codomains. Obviously, if, for example MinValue is
min and MaxValue is max, it will enforce a
BETWEEN min and max validation rule or
CHECK constraint, respectively; if only min is not
null whereas max is null a ≥ min one is enforced.
You can define a value set by declaring it as a
subset of a data type; for example, you can define
RAINBOW_COLORS ⊆ ASCII(6), which will
create a corresponding table, and then fill it with
data (e.g. ‘red’, ‘orange’, ‘yellow’, ‘green’, ‘blue’,
‘indigo’, ‘violet’). If the corresponding set is
declared as static, then in its MS SQL Server
version a corresponding CHECK IN (…)
constraint is enforced, whereas in its MS Access
one a combo-box filled with corresponding field
values is declared; if not, a referential integrity
constraint is enforced between the corresponding
column and the surrogate primary key with
auto-numbering of that value set.

3.2 Existence constraints

MatBase enforces both the particular NOT NULL
constraints and the general existence ones. NOT
NULL is enforced in both versions with the
corresponding SQL clause. According to the math
definition, the FUNCTIONS form contains a Total
column for it: when checked, NOT NULL is
enforced for the corresponding column. For object
identifiers (to which table primary keys corres-
pond), canonical Cartesian projections (the
so-called roles of underlying sets in relationships,
e.g. Country and Neighbor in NEIGHBORS),
canonical surjections (e.g. Represented By :
PEOPLE → MPS, where MPS ⊆ PEOPLE is the
set of the members of the Parliament) totality
cannot be removed.

As the general existence constraints (EC) imply
each two functions, MatBase GUI provides an
EXISTENCE CONSTRAINTS form with three
columns: the corresponding primary key (that is
also a foreign key referencing the primary one of
the CONSTRAINTS table), the left, and the right

side functions. You can only add or remove ECs.
When adding a new one, first of all, MatBase
enforces the meta-constraints stating that both
functions have to be defined on a same set, not
being total (i.e. accepting nulls), and, for the
moment, not being calculated. If they are met and
the db instance satisfies it, then corresponding
code (VBA or C#, respectively, with embedded
SQL) is automatically generated into the standard
update form associated to the common functions
domain. When an EC is deleted, this code is
automatically deleted too.

3.3 Uniqueness (key) constraints

The unique feature of MatBase when it comes to
key constraints is its Keys Discovery Assistant
(KDA) [19]. You can invoke this wizard set by set,
for both relationship and entity type ones. For
relationships, in a first step, only structural keys
are considered, i.e. keys made out only of the
corresponding canonical Cartesian projections. In
a second step, just like for the entity type sets, all
prime mappings defined on that set are
considered. When it opens, the wizard presents
you with all keys already declared for that set, if
any, as well as with all other possible key
candidates, if any. You can delete existing keys
or/and declare new ones out of the existing
candidates. After each such operation, the wizard
re-computes the possible keys. Moreover, KDA
does the following other tasks:

● It is never including superkeys among the
candidates.

● It stops when the maximum possible number
of keys is reached.

● It does not allow enforcement of keys
whenever the current db instance violates
them.

● Generates and apply corresponding ALTER
TABLE DROP/ADD CONSTRAINT SQL DDL
UNIQUE statements whenever possible (i.e.
in MS Access, for example, when the key arity
is maximum 10 and all involved column data
types are accepted in keys, and there are at
most 6 keys per table, whereas in MS SQL
Server the maximum is 32, and, moreover,

Volume 17 | Issue 1 | Compilation 1.0© 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

43

none of the columns has more than one null
value).

● For all other keys (i.e. of greater arity or/and
containing not accepted column data types),
in order to enforce them it automatically
generates code (VBA or C#, respectively, with
embedded SQL) in the corresponding set/
table standard update form.

3.4 Referential integrities (foreign key) constraints

For any set, MatBase adds a corresponding object
identifier mapping (named x), i.e. a totally
defined, one-to-one function defined on that set
and taking integer values (for which, in the
corresponding table, a surrogate primary key is
added, with auto- numbering if the table does not
correspond to a subset of another set). For any
structural function, i.e. one defined on and taking
values from object sets, it automatically adds a
corresponding column in the table corresponding
to the domain set and declares it as being a
foreign key referencing the primary key of the
table corresponding to the co-domain set (for
auto-functions, obviously, this is the primary key
of the same table). Enforcement/ dropping of
referential integrities is done through generation
and execution of corresponding SQL DDL
CONSTRAINT clauses of type FOREIGN KEY.

Consequently, all foreign keys generated by
MatBase are single-columned and integer type
ones referencing primary keys. For example, for
the function State : CITIES → STATES, total in
table CITIES an integer column State not
accepting nulls is added and declared as a foreign
key referencing the primary one of table STATES.

3.5 Tuple (check) constraints

MatBase enforces/drops these constraints exactly
like the RDBMSes on which is built upon, either
by generating and executing corresponding
ALTER TABLE ADD/DROP CONSTRAINT SQL
DDL CHECK statements in its MS SQL Server
version or by calling VBA + embedded SQL
methods using ADO with corresponding

parameters in its MS Access one (as there is no
CHECK clause in Access’ SQL).

For example, in its MS SQL Server version, for the
constraint StartDate ≤ EndDate ≤ StartDate + 30
attached to a table PROJECTS MatBase generates
and runs the SQL DDL statement ALTER TABLE
PROJECTS ADD CONSTRAINT PROJECTS_C_1
CHECK EndDate BETWEEN StartDate AND
StartDate + 30.

IV. CONCLUSION

MatBase enforces all five types of relational
constraints in both its versions. Whenever this is
possible, it does so by using the underlying MS
engines (Access and SQL Server, respectively).
Moreover, MatBase has several unique features
that no other DBMS has, out of which the main
ones are the following:

● Also enforces general existence constraints,
not only their particular NOT NULL case.

● Provides users with the facility to declare
functions (and corresponding columns) as
being nonprime (i.e. never able to take part in
a unique key), so as to minimize the time
needed to discover all existing keys.

● Provides a Keys Discovery Assistant, which
guides users and enforces/drops keys and
only keys (i.e. never superkeys) in discovering
and enforcing all existing keys in the least
time possible.

● Enforces keys that are not enforceable by
using the underlying MS engines (i.e. in
Access, for example, those of greater than
accepted arity or/and containing columns not
accepted in keys or/and all those that surpass
the maximum of 6 keys per table) by
automatic code generation.

● Automatically generates optimal primary keys
(i.e. single-columned and integer type ones).

● Automatically generates optimal foreign keys
(i.e. single-columned and integer type ones
referencing primary keys).

● Enforces dozens of other constraint types,
which are non-relational and exist only in the

Volume 17 | Issue 1 | Compilation 1.0 © 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

44

Elementary Mathematical Data Model,
through automatic code generation.

Further work will include allowing definition of
existence constraints for computed functions too,
as well as modifying existence constraints.
Moreover, MatBase versions for Oracle, IBM
DB2, MySQL, and PostgreSQL are planned too.

REFERENCES

1. Mancas, C. (1997) Conceptual data modeling.
(in Romanian) Ph.D., Thesis: Politehnica
University, Bucharest, Romania.

2. Mancas, C.; Dragomir S.; Crasovschi, L.
(2003) On modeling First Order Predicate
Calculus using the Elementary Mathematical
Data Model in MatBase DBMS. In Proc.
IASTED AI 2003 MIT Conf. on Applied
Informatics, 1197-1202, Acta Press,
Innsbruck, Austria.

3. Mancas, C.; Dragomir S. (2004) MatBase
Datalog Subsystem Metacatalog Conceptual
Design. In Proc. IASTED SEA 2004 MIT
Conf. on Software Eng. and App., 34-41, Acta
Press, Cambridge, MA.

4. Mancas, C.; Mancas, S. (2005) MatBase E-R
Diagrams Subsystem Metacatalog
Conceptual Design. In Proc. IASTED DBA
2005 Conf. on DB and App., 83-89, Acta
Press, Innsbruck, Austria.

5. Mancas, C.; Mancas, S. (2006) MatBase
Relational Import Subsystem. In Proc.
IASTED DBA 2006 Conf. on DB and App.,
123-128, Acta Press, Innsbruck, Austria.

6. Mancas, C. (1985) Introduction to a data
model based on the elementary theory of
sets, relations and functions (in Romanian).
In Proc. of INFO IASI '85, 314-320, A.I.Cuza
University, Iasi, Romania.

7. Mancas, C. (1990) A Deeper Insight into the
Mathematical Data Model. Proc. 13th Intl.
Seminar on DBMS, ISDBMS’90, 122-134,
Mamaia, Romania.

8. Mancas, C. On Modeling Closed E-R
Diagrams Using an Elementary Mathe-
matical Data Model. Proc. 6th ADBIS 2002
Conf. on Adv. in DB and Inf. Syst., 165-174,

Slovak Technology University Press,
Bratislava, Slovakia, 2002.

9. Mancas, C. (2002) On Knowledge
Representation Using an Elementary
Mathematical Data Model. In Proc. IASTED
IKS 2002 Conf. on Inf. and Knowledge
Sharing, 206-211, Acta Press, St. Thomas,
U.S. Virgin Islands, U.S.A.

10. Mancas, C. (2015) Conceptual Data Modeling
and Database Design: A Completely Algo-
rithmic Approach. Volume I: The Shortest
Advisable Path. Waretown, NJ: Apple
Academic Press / CRC Press / Francis &
Taylor.

11. Mancas, C. (2017) Conceptual Data Modeling
and Database Design: A Completely Algo-
rithmic Approach. Volume II: Refinements
for an Expert Path. Waretown, NJ: Apple
Academic Press / CRC Press / Francis &
Taylor (to be published).

12. Codd, E. F. (1970) A relational model for
large shared data banks. CACM 13(6):
377-387.

13. Abiteboul, S.; Hull, R.; Vianu, V. (1995)
Foundations of Databases; Addison-Wesley:
Reading, MA.

14. Chen, P. P. (1976) The entity-relationship
model: Toward a unified view of data. ACM
TODS 1(1): 9-36.

15. Oracle Corp. (2005) Application Developer’s
Guide - Fundamentals. https://docs.oracle.
com/cd/B19306_01/appdev.102/b14251.pdf

16. Microsoft Corp. (2016) SQL Server
Constraints. https://technet.microsoft.com/
en-us/library/ms1 89862(v=sql.105).aspx

17. Microsoft Corp. (2015) Access Constraint
clause. https://msdn.microsoft.com/en-us/
library/office/ff836971.aspx

18. Microsoft Corp. (2016) ADO API Reference.
https://msdn.microsoft.com/en-us/library/
ms678086(v=vs.85).aspx

19. Mancas, C. (2016) Algorithms for Database
Keys Discovery Assistance. In Perspectives in
Business Informatics Research, 322-338,
LNCS 261, Springer International Publishing.

Volume 17 | Issue 1 | Compilation 1.0© 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

45

This page is intentionally left blank

Volume 17 | Issue 1 | Compilation 1.0 © 2017 London Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

On enforcing relational constraints in MatBase

46

For Authors

Author Membership provide
access to scientific innovation,
next generation tools, access to
conferences/seminars
/symposiums/webinars, network-
ing opportunities, and privileged
benefits.
Authors may submit research
manuscript or paper without
being an existing member of LJP.
Once a non-member author sub-
mits a research paper he/she be-
comes a part of "Provisional
Author Membership".

Society flourish when two institu-
tions come together." Organizations,
research institutes, and universities
can join LJP Subscription member-
ship or privileged "Fellow Member-
ship" membership facilitating re-
searchers to publish their work with
us, become peer reviewers and join
us on Advisory Board.

Subscribe to distinguished STM
(scientific, technical, and medi-
cal) publisher. Subscription
membership is available for indi-
viduals universities and institu-
tions (print & online). Subscrib-
ers can access journals from our
libraries, published in different
formats like Printed Hardcopy,
Interactive PDFs, EPUBs,
eBooks, indexable documents and
the author managed dynamic live
web page articles, LaTeX, PDFs
etc.

London Journal Press Membership
For Authors, subscribers, Boards and organizations

London Journals Press membership is an elite community
of scholars, researchers, scientists, professionals and in-
stitutions associated with all the major disciplines.
London Journals Press memberships are for individuals,
research institutions, and universities. Authors, subscrib-
ers, Editorial Board members, Advisory Board members,
and organizations are all part of member network.

For SubscribersFor Institutions

© 2017 London Journals Press Volume 17 | Issue 1 | Compilation 1.0 V

*THIS JOURNAL SUPPORT AUGMENTED REALITY APPS AND SOFTWARES

JOURNAL AVAILABLE IN

www.journalspress.com
support@journalspress.com

© Copyright 2017 London Journals Press

GO GREEN AND HELP
SAVE THE ENVIRONMENT

SCAN TO KNOW MORE

PRINTED VERSION, INTERACTIVE PDFS, EPUBS, EBOOKS, INDEXABLE
DOCUMENTS AND THE AUTHOR MANAGED DYNAMIC LIVE WEB PAGE
ARTICLES, LATEX, PDFS, RESTRUCTURED TEXT, TEXTILE, HTML, DOCBOOK,
MEDIAWIKI MARKUP, TWIKI MARKUP, OPML, EMACS ORG-MODE & OTHER

