
Scan to know paper details and
author's profile

449UVolume 23 | Issue 5 | Compilation 1.0

LJP Copyright ID: 975855
Print ISSN: 2514-863X
Online ISSN: 2514-8648

London Journal of Research in Computer Science and Technology

 ABSTRACT

Visualization Tool for Data Structures in Real
Time

Data structures are crucial aspects of Computer Science, but grasping their abstract nature poses

challenges for students and software developers. A visualization tool for data structures such as arrays,

stacks, and trees would effectively simplify the complex nature of data structures and algorithms. This

research utilized an object-oriented approach to create a real-time Visualization Tool for Data

Structures. This tool offers visual representations of fundamental data structures such as arrays and

trees. The visualization tool is web-based and developed with HTML, CSS, and JavaScript technologies.

The tool's efficacy underwent evaluation using complexity metrics. Results notably demonstrate that as

the volume of data increases, the complexity of data structures follows suit. Consequently, this paper

serves as an informative resource concerning the selection of data types and their respective

implementation styles within data structures. Such insights furnish developers with valuable

knowledge regarding the efficiency of diverse data types in software development, empowering

informed decisions when choosing between data types based on their impact on space complexities

within data structures.

Keywords: data structures, visualization, hybrid input, object-oriented methodology, complexity.

Classification: ACM Code: D.2.2

Language: English

Benita Ojugo Ekene-Okikere, Chidiebere Ugwu & Linda Uchenna Oghenekaro

© 2023. Benita Ojugo Ekene-Okikere, Chidiebere Ugwu & Linda Uchenna Oghenekaro. This is a research/review paper, distributed under
the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/
licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Visualization Tool for Data Structures in Real
Time

ABSTRACT
Data structures are crucial aspects of Computer

Science, but grasping their abstract nature poses

challenges for students and software developers.

A visualization tool for data structures such as

arrays, stacks, and trees would effectively

simplify the complex nature of data structures

and algorithms. This research utilized an

object-oriented approach to create a real-time

Visualization Tool for Data Structures. This tool

offers visual representations of fundamental

data structures such as arrays and trees. The

visualization tool is web-based and developed

with HTML, CSS, and JavaScript technologies.

The tool's efficacy underwent evaluation using

complexity metrics. Results notably demonstrate

that as the volume of data increases, the

complexity of data structures follows suit.

Consequently, this paper serves as an

informative resource concerning the selection of

data types and their respective implementation

styles within data structures. Such insights

furnish developers with valuable knowledge

regarding the efficiency of diverse data types in

software development, empowering informed

decisions when choosing between data types

based on their impact on space complexities

within data structures.

Keywords: data structures, visualization, hybrid

input, object-oriented methodology, complexity.

Author α σ ρ: Department of Computer Science,

University of Port Harcourt, Rivers State, NIGERIA

I. INTRODUCTION
Data structures are basic concepts in computer

science and play a vital role in developing efficient

software applications. Computer Science students

must understand

these concepts to create optimal and dynamic

applications. Research has indicated that students

have significant challenges when attempting to

use abstract programming concepts such as data

structures. They also lack the skills required to

function in an abstractive manner and to

understand the fundamental components of the

concept and their relationships [1, 5, 6]. Data

structure is a manner to storing, organizing, and

managing data to ease access and alteration of

data. There is a range of data structures used in

software applications (array, stack, tree, etc).

Nevertheless, the unproductive use of data

structure and its corresponding operations (such

as adding, and deleting elements) generates

memory issues that affect systems’ performance.

For this reason, data structure analysis is a

prevalent task during software development [2].

Illustrating the correlation between computing

and the real world holds the promise of

amplifying students' drive and fascination toward

the field of computing [3]. To boost the students’

understanding in computer science education,

and educational technologies are often used to

assist students to understand data structures.

These technologies ultimately rely on automated

visualization as their main feature; a specific topic

is explained through intuitive visuals and

animation [4]. This approach helps the

development of problem solving skills, such as

computational thinking, which are crucial in the

field of software development.

Visualizing data structures offers productivity and

effectiveness in understanding the underlying

abstraction. A survey conducted by [2] detected

that 30.46% of visualizations, support developers

in inspecting, and analyzing data structures.

Again, studies done by [5, 6] have shown that by

applying visualization tools, students’

understanding is improved, and there is increase

1533 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Benita Ojugo Ekene-Okikereα, Chidiebere Ugwuσ & Linda Uchenna Oghenekaroρ

in their motivation and interest in learning data

structures. The data structures’ tools realistically

and dynamically show the behavior of data

structures and the state changes of their core

components during program execution. These

visualizations focused on abstracting the

algorithm’s data structures and operations,

thereby presenting the user with a graphical

representation of these abstractions [7]. The

primary aim is to assist learners in

comprehending the intricacies of implementing

data structures, enabling them to create various

mental models, establish connections between

structures, and develop generalized

problem-solving approaches [1,7]. The efficacy of

visualization system is determined by measuring

the pedagogical value [8].

According to [8, 9], an effective data structures

and algorithm visualization systems ought to

adhere to multiple guidelines, encompassing

accessibility on platforms targeting global

audiences, the utilization of a unified user

interface to efficiently support diverse animations,

and notably, the integration of input features

within these visualization systems is deemed

crucial for expediting comprehension of the

underlying abstraction of the subject. Also, one of

the effective features of an efficient visualization

system is to provide a robust data set that

accommodates all the cases to help students

comprehend an unacquainted algorithm [7]. In

recent years, the proliferation of HTML5

technology and its subsequent enhancement of

high-quality browser-based graphics capabilities

have spurred the creation of fully web-based data

structure visualization tools, executable across

diverse platforms and devices. Researchers have

begun integrating various innovations into their

visualization tools, such as color, smooth

transitions between states, animations, and the

integration of input features. However, despite

the abundance of available tools, many of them

lack a scalable input method and an intuitive user

interface. Presently, they only support a

single-element input method with a

predetermined input size, which impedes the

efficient representation of data structures. As data

volumes increase, complexities escalate,

underscoring the need for a novel approach to

simplify data structures.

According to [7], involving students in

constructing, customizing, manipulating, and

directing various aspects of visualization, while

enabling user input, fosters active engagement

and enhances understanding. Consequently, we

opined that incorporating a Hybrid Input method

(supporting both file upload and single-element

input) with customizable input sizes into the

design of a data structure visualization tool will

significantly enhance learner engagement and

improve learning outcomes. Based on this idea,

we propose a visualization tool for data structures

featuring a Hybridized input method. This tool

empowers users to visualize data structures using

scalable datasets and a hybrid input approach,

effectively simplifying the complex underlying

abstractions of data structures. The tool will offer

visualizations for fundamental data structures like

Arrays, Stacks, and Trees. These intuitive visual

representations will incorporate

Algorithm-Specific Controls, adapting algorithmic

operations based on the type of data structure

being visualized. For instance, operations like

'push' and 'pop' in a stack structure can be

visualized through straightforward button

interaction.

Data structure visualization has gained increasing

attention in the field of computer science with

numerous researchers contributing their insight

and techniques in the development of data

structures visualization tools [2]. As web browsers

and the internet became more prevalent, data

structures visualizers also followed this trend.

Various web-based data structures visualization

systems have been developed over the years with

HTML5 technology and high-quality

browser-based graphics. Nevertheless, none of

them have provided the necessary level of

scalability and intuitiveness needed to explore

data structures.

Vrachnos et al. [1] developed DAVE, an interactive

algorithm visualization environment designed

specifically for visualizing Array data structure.

Their literature review revealed a significant gap

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press34 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

in research focused on understanding students’

mental models and programming challenges

related to arrays, despite arrays being a

fundamental component of introductory

programming curricula. Their work primarily

concentrated on assessing the functionality of the

system and its potential in aiding students in

developing proficient mental models for

visualizing array data structure. They capitalized

on modern web browser capabilities by

incorporating web technologies and

methodologies. The researchers found that using

visualization tools significantly assisted 98% of

Computer Science students in Greek upper

schools in solving algorithmic problems related to

array data structures. Buchanan et al. [10]

presented CSTutor, a sketch based interface

designed to aid students’ understanding of data

structures. The tool utilized the interface to allow

users to visually represent data structures such as

Linked Lists, BS Trees, Heaps, and AVL Trees.

CSTutor allows users to edit the generated code,

and any modifications in the code, then animate

the corresponding data structure on canvas. This

integration aims to bridge the gap between

conceptual understanding, represented through

diagrams, and the practical implementation of

data structures.

One of the most widely used data structure

visualization tools today is Data Structure

Visualization (DSV). Galles developed an

open-source web-based data structure

visualization tool [11]. This tool aids students in

comprehending intricate data structures through

interactive animations and visualizations. It was

developed using Java-script and HTML5,

ensuring compatibility with a broad array of

modern browsers. Šimoňák and Benej [12],

developed a desktop application called

Algomaster, specifically designed for learning and

teaching Data Structures and Algorithms. They

used .NET Framework platform and C#

programming language for the development of a

plugin-based data structure and algorithm

visualization tool. In their technique, the

researchers combine two panels (for a pseudo

code and a visualization) as an effective way of

explaining data structures and algorithms. To

ensure the extensibility, application could be

plugin-based.

Burlinson et al. [3], introduced the BRIDGES

(Bridging Real-world Infrastructure Designed to

Goal-align, Engage, and Stimulate) system, a

software framework aimed at facilitating the

creation of more captivating assignments within

the introduction to data structures courses. This

system offers APIs that empower users to

construct data structures using the BRIDGES

client classes in either Java or C++. Additionally,

the system integrates a BRIDGES server that

provides APIs, granting users access to real-world

datasets for visualization purposes. The system's

capabilities were utilized to visually represent

data structures such as queues, linked lists, stacks,

arrays, trees, and graphs, alongside the

implementation of search algorithms. A notable

aspect of BRIDGES is its feature enabling easy

sharing of visualizations via web links. Kumari et

al. [13], introduced Algoviz, a web-based

interactive tool that utilizes modern-day

JavaScript to visually represent the logic of

different searching and sorting algorithms. The

researchers discussed the contrasting outcomes

regarding the efficacy of visualization methods

when compared to traditional approaches. Their

investigation focused on identifying the key

features that contribute to an efficient algorithm

visualization system, leading them to outline five

essential characteristics for achieving this

objective. Unlike most web-based visualization

systems that rely on java applets, Algoviz is a fully

web-based system, Algoviz focuses on dynamic

visualizations for only array data structures with

the implementation of sorting and searching

algorithms.

II. METHODOLOGY

Our goal in this study is to create a scalable and

efficient visualization tool for data structures in

real time that will increase learning results and

engage learners. To achieve this goal, we analyse

the proposed system, incorporate Object Oriented

approach in the design process of the system and

evaluate the tool using space complexity metrics.

The first step in our approach is to analyse our

proposed system. The tool aims to visualize array,

1535 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Visualization Tool for Data Structures in Real Time

stack, and tree data structures. By facilitating the

visualization of these fundamental data

structures, the tool intends to offer users a more

comprehensive understanding and flexibility in

exploring diverse data inputs and their impact on

space complexity. The technologies that were

employed in the development of this tool are

HTML5, CSS and JavaScript. Furthermore, the

system operates entirely on the client side,

ensuring there's no added strain from interactions

with a server. The proposed system uses Direct

visualization algorithm. Direct-visualization

algorithms uses a user-defined transfer parameter

to allocate color opacity and size to data [15].

Direct visualization algorithms, are algorithms

designed specifically to visualize data directly.

They take data as input and produce the

visualization as output, without an intervening

step of data interpretation. Additionally, the

proposed system uses Algorithm-Specific Controls

to manipulate and control the visualization of

data, this control delivered algorithm operation

that changes depending on the type of algorithm

being visualized. Fig. 1 illustrates the architecture

of the system being proposed.

Fig. 1: Architecture of the proposed system

The proposed system's architecture represents the

fundamental structure and design blueprint,

offering an abstract overview of how its diverse

elements collaborate. It delineates the system's

constituents, their interconnections, interactions,

and the guiding principles steering the system's

design. The system comprises two primary

components. Firstly, the Home Page functions as

a hub for Visual components, showcasing array,

stack, and tree data structures. These visuals are

interactive, enabling users to navigate to specific

interfaces, such as the array interface, through

clickable array icon on the homepage. Secondly,

the User Interface Components consist of the

Data Input Area, Visualization Controls (VCR

Controls), and Animation Area. The Input Area

employs a Hybrid-Input technique, supporting

file uploads (CSV) and single data entry. The

Visualization Controls, actively interact with and

manipulate the displayed data structures. These

controls are embedded with functions like Push,

Pop, Clear, Search, Pause, Continue, and

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press36 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

StepBack, facilitating user interaction and

manipulation of the visualized data. The third

component of the system is the Parser Module

that handles the handleFileUpload(event) reads

uploaded file content via FileReader API. Parses

CSV data into structured arrays/stacks and trees,

then transfers the formatted data to the

visualization engine. The fourth component is

Visualization Engine: which receives the

formatted data from the parser and Uses

CanvasRenderingContext2D API to renders data

structures animations on the visualization area

(canvas).

Having analysed the proposed system, we then

proceed to design the proposed system using

Object-Oriented Analysis and Design (OOAD).

Unified Modelling Language (UML) is one of the

standards widely accepted languages, generally

used for modelling any system considered as

objects for better analysis [14]. This technique

mainly focuses on the modelling of the exact

procedure or near to the exact procedure within

its application domain which may be modeled by

using different object classes. The different types

of UML diagrams used for OOAD and to model

the proposed system include the Use Case

Diagram, Sequence Diagram, and Class Diagram.

Use Case Diagrams graphically models

functionalities and the various ways the end user

may interact with the target system. Fig.2 depicts

the Use Case Diagram of the proposed system, by

using various types of graphs, the structure

illustrates the connections among the internal

systems and also different external systems along

with end users. In this system, the actors include

the user (An individual interacting with the

system, utilizing its functionalities) and the

System Administrator (Responsible for managing

system settings and configurations). The actions

are depicted in circles while the dotted lines; ‘<<

extend>>’ depicts the corresponding response of

the system when a user loads data into the system.

Additionally, ‘<< include >> depicts the methods

within a specific action. The sequence diagram of

the proposed system in fig. 3 depicts the sequence

of interactions between the user, the proposed

visualization system and the three data structures.

Each vertical line represents a participant, and

arrows indicate the flow of messages between

them. It starts with user interaction triggering the

system's response to visualize the selected data

structure. The diagram depicts how the system

processes user inputs, manipulates data

structures, and updates visual representations

accordingly. It highlights the synchronization

between user actions, data manipulation, and the

real-time reflection of changes in the

visualizations, providing a clear overview of how

the system handles interactions and updates

during data structure visualization.

1537 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Visualization Tool for Data Structures in Real Time

Fig. 2: Use Case Diagram of the Proposed System

Fig. 3: Sequence Diagram of the Proposed System

Fig.4 depicts the rigid framework of our system

built with classes. At the core of this diagram is

the 'DataStructure Visualization' class,

responsible for orchestrating the visualization

process and managing interactions between

various data structure classes. This class

aggregates instances of 'ArrayDataStructure,'

'StackDataStructure,' and 'TreeDataStructure,'

each dedicated to managing the visualization of

arrays, stacks, and trees, respectively. The

'ArrayDataStructure,' 'StackDataStructure,' and

'TreeDataStructure, classes inherit from

'DataStructure Visualization,' leveraging common

visualization functionalities while focusing on

rendering their specific data structures

graphically. Furthermore, the 'Visualization

Controls' classes handles user interactions with

the visualizations, controlling functionalities such

as play, pause, and step forward/backward. The

'Array Visualization Control,' 'Stack Visualization

Control,' and 'Tree Visualization Control,' classes

associate with the 'Array Visualization,' 'Stack

Visualization,' and 'Tree Visualization,' enabling

users to manipulate and interact with the

visualized data structures seamlessly. These

classes and their relationships form the backbone

of the proposed system,

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press38 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

Fig. 4: Class Diagram of the Proposed System

III. RESULTS AND DISCUSSION

To construct the Data Structures Visualization

tool, we employed HTML, CSS, and JavaScript.

CSS and JavaScript play pivotal roles in designing

an efficient user interface and creating visual

representations, offering adaptability to the tool.

This flexibility ensures platform independence,

exemplified by the URL https://dsgrafix.

netlify.app/ in Fig, 5. Within the visualization

tool, we introduced the Hybrid-Input technique,

presenting specific buttons such as "Add," "Push,"

and "Insert Value" for array, stack, and tree user

interfaces respectively, as depicted in Figures 6, 7,

and 8. These buttons enable users to practice

randomized single-element data entry techniques.

Additionally, we included a file upload input

method, allowing users to upload CSV files

containing large datasets for tailored practice

sessions. Various colour gradients are utilized to

aid learners in comprehending the fundamental

steps and transitions within the data structures.

User interaction is facilitated through different

buttons like "push," "pop," "search," "pause,"

"continue," "stepback," and "clear." These buttons

ensure smooth navigation through the

visualization stages, accommodating users'

specific requirements.

In the evaluation of the tool using space

complexity metrics, we conducted a detailed

experiment with our visualization tool. During the

experiment, from the home page(https://

dsgrafix.netlify.app/) in fig. 5, we navigated to the

data structures interfaces using and for the array, stack and tree

interfaces respectively. On the array interface we

uploaded a CSV file containing 200 float elements

using the file upload technique. For the stack and

tree, we entered 50 and 22 integer elements

respectively into the Data Area through the

manual data single element entry technique.

The change event listener was activated by the file

upload to handle the file input element's

alteration. The event listener for change

(fileInput.addEventListener('change',this.handleF

ileUpload.bind(this));) responds to the change

event occurring in the file input element,

initiating the execution of the handle File Upload

(event) function. The `handleFileUpload(event)

retrieves the uploaded file and reads its content

using the FileReader API. The FileReader() called

the parseCSV(file) function, which is a function

responsible for parsing the contents of the

selected file. The Parser Parsing CSV Data: Inside

the onload callback function, received the content

of the CSV file as a string in the csvData variable.

1539 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Visualization Tool for Data Structures in Real Time

https://dsgrafix.netlify.app/
https://dsgrafix.netlify.app/

The content was assumed to contain data

separated by newline characters (`\n`). The

parser then parsed this CSV data into a structured

format of arrays, stacks and trees respectively.

The parser then transferred the formatted data to

the Visualization Engine. The Visualization

Engine; draw(), then used the 2D context API to

draw and render the formatted data on the

Visualization Area (HTML canvas element).

Fig. 5: Data Structures Visualization Home page

The graphical representation of the array data

structure is depicted in Fig. 6, demonstrating

array with a length of 200. The indices range from

0 to 199, serving as numerical identifiers. The

initial index is 0, concluding at 199. The values

within the square boxes denote the array

elements. The array's first index, 0, holds the

value 54.98, while the final index, 199, holds the

value 3.08. However, index 200 remains empty as

each array element possesses a distinct memory

address, beginning with a zero index. The

graphical representation in Fig. 7 demonstrates

the stack structure, starting from element 45,

which was the first input pushed into the stack as

the base element, up to 378, the last input and the

top element. The red pointer on top of the stacked

elements indicates the top of the stack. The stack

operates on a 'First In, Last Out' principle where

the first element added to the stack is the last

element to be removed from the stack. The 'push'

adds an object to the stack, and 'pop' removes an

object from the top of the stack.

Fig. 8 illustrates the binary tree data structure,

commencing with the insertion of 25 as the initial

element, functioning as the root at level zero or

the first index of the tree. Subsequently, elements

22 and 89 were added in sequence as the

immediate nodes branching from element 25.

Further additions represent subsequent nodes or

children of elements 22 and 89, positioning them

as grandchildren based on their arrangement as

shown in the figure. In a tree structure, multiple

sub-trees can be delineated. The terminal

elements, such as 10, 15, 93, and 102, often

termed as leaf nodes, serve as the endpoints

without further branches. These leaf nodes are

parented by elements 11, 85, and 100, forming the

hierarchy within the tree. A search operation was

performed to locate the element 20 within the tree

data structure. The indication of a double circle on

the element signifies that the search operation

successfully found the element within the

structure.

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press40 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

Fig. 6: Visualization of Array of Two Hundred Elements.

Fig. 7: Visualization of Stack Data Structure with Fifty Elements.

1541 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Visualization Tool for Data Structures in Real Time

Fig. 8: Visualization of Tree Data Structure with Twenty Two Elements.

Table 1 shows the space complexities of the

visualized array, stack and tree data structures.

For arrays, the space complexity O(n) is directly

related to the total number of elements multiplied

by the size of each element. Here, the array

contains 200 elements, and the assumption is that

each element takes up 4 bytes of memory. Hence,

the total space required to store all 200 elements

is 800 bytes. The space complexity for a stack

often relies on the number of elements and the

way elements are stored. Also noted with O(n) is

the space complexity of the binary tree data

structure. Fig. 9 shows that the complexity of data

structures rises along with increase in the volume

of data. The space complexity by memory

consumption depends on the storage required by

each value.

Table 1: Tests Results for the Data Structures Visualization.

Data Structures
Elements Attributes

Space Complexity

Type Type Number By Number By size

Array Float 200 O(200) 800 bytes

Stack Integer 50 O(50) 200 bytes

Tree Integer 22 O(22) 88 bytesLo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press42 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

Fig. 9: Effect of Data Size on Space Complexity

REFERENCES

1. Vrachnos, E. and Jimoyiannis, A., 2014.

Design and evaluation of a web-based

dynamic algorithm visualization environment

for novices. Procedia Computer Science, 27:

229-239.

2. Blanco, A.F., Bergel, A. and Alcocer, J.P.S.,

2022. Software visualizations to analyze

memory consumption: A literature

review. ACM Computing Surveys

(CSUR), 55(1): 1-34.

3. Burlinson, D., Mehedint, M., Grafer, C.,

Subramanian, K., Payton, J., Goolkasian, P.,

Youngblood, M. and Kosara, R., 2016,

February. BRIDGES: A system to enable

creation of engaging data structures

assignments with real-world data and

visualizations. In Proceedings of the 47th

ACM technical symposium on computing

science education. 18-23

4. Nathasya, R.A., Karnalim, O. and Ayub, M.,

2019. Integrating program and algorithm

visualisation for learning data structure

implementation. Egyptian Informatics

Journal, 20(3):193-204.

5. Akram, J. and Fang, L., 2015, April. Cognitive

effects of visualization on learning data

structure and algorithms. In The Third

International Conference on Digital

Enterprise and Information Systems

(DEIS2015) 70

6. Ab Rahman, A.N.F., Khalid, N. and Abdullah,

F.,2016. Web-Based Visualization Tools Of

Data Structure & Algorithm–A Review Of

Experience. International Conference on

Information Technology and Multimedia 2016

IC-ITM.

7. Romanowska, K., Singh, G., Dewan, M.A.A.

and Lin, F., 2018, October. Towards

developing an effective algorithm visualization

tool for online learning. In 2018 IEEE

SmartWorld, Ubiquitous Intelligence &

Computing, Advanced & Trusted Computing,

Scalable Computing & Communications,

Cloud & Big Data Computing, Internet of

People and Smart City Innovation

(SmartWorld/SCALCOM/UIC/ATC/CBDCom

/IOP/SCI). 2011-2016. IEEE.

8. Lazaridis, V., Samaras, N. and Sifaleras, A.,

2013. An empirical study on factors

influencing the effectiveness of algorithm

visualization. Computer Applications in

Engineering Education, 21(3). 410-420.

9. Supli, A.A., Shiratuddin, N. and Zaibon, S.B.,

2016. Critical analysis on algorithm

visualization study. International Journal of

Computer Applications, 150(11).

10. Buchanan, S., Ochs, B. and LaViola Jr, J.J.,

2012, February. CSTutor: a pen-based tutor

for data structure visualization.

1543 | | Volume 23 Issue Ӏ Compilation 1.0© 2023 Great] Britain Journals Press

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

5

Visualization Tool for Data Structures in Real Time

In Proceedings of the 43rd ACM technical

symposium on Computer Science Education

565-570.

11. Galles D. "Data Structure Visualizations,"

University of San Francisco.

12. Šimoňák, S. and Benej, M., 2014. Visualizing

algorithms and data structures using the

algomaster platform. Journal of Information,

Control and Management Systems, 12(2),

189-201.

13. Kumari, A., Mittal, M., Jha, V., Sahu, A.,

Kumar, M., Sangwan, N. And Bohra, N., 2022.

Algorithm Visualization-Modern Web-Based

Visualization of Sorting and Searching

Algorithms. Advances and Applications in

Mathematical Sciences, 21(5).2721-2736.

14. Mukherjee, M., 2016. Object-Oriented

Analysis and Design. International Journal of

Advanced Engineering and

Management, 1(1),1-11.

15. Ma, B., Suter, S.K. and Entezari, A., 2017.

Quality assessment of volume compression

approaches using isovalue

clustering. Computers & Graphics, 63, 18-27.

Lo
nd

on
 Jo

ur
na

l o
f R

es
ea

rc
h

in
 C

om
pu

te
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y

10 © 2023 Great] Britain Journals Press44 | | Volume 23 Issue Ӏ Compilation 1.0 5 | |

Visualization Tool for Data Structures in Real Time

