

Scan to know paper details and author's profile

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area on Bio-Chemical Changes in Hyperglycemic Rats

Dr. Lobna Saad Mohammed Abd Elmeged & Dr. Nora Mesfer Attia Al zahrani

Al Baha University-KSA

ABSTRACT

Background: Leafy vegetables are among the most nutritious vegetables on a fresh weight basis and are also among the world's most productive plants in terms of nutritional value per unit area, in part because they grow rapidly, allowing several crops or harvests in a season.

Objective: This investigation aims to therapeutic effects of vegetable growths (green on ground parts) of tuberous plants such as greens of taro, carrot, sugar beet, sweet potato, and potato leaves and stem are scant.

Design: Thirty five rats Sprague Dawley white male albino rats, weighing about $150 \pm 10g$ were used in the study. The experiment was performed in Animal House. All rats were fed for one week on basal diet before starting the experiment, then divided into two main groups, the first group (n= 5 rats) was fed on the basal diet only as a control negative (C –ve) normal rats for 28 days. The rats of second main group (n= 30 rats) were injected alloxan. The obtained data were statistically analyzed using computerized SPSS.

Keywords: vegetable greens of tuberous plants, diabetic, biochemical change.

Classification: FOR Code: 039999

Language: English

LJP Copyright ID: 824556 Print ISSN: 2631-8490 Online ISSN: 2631-8504

London Journal of Research in Science: Natural and Formal

Volume 18 | Issue 2 | Compilation 1.0

© 2018. Dr. Lobna Saad Mohammed Abd Elmeged & Dr. Nora Mesfer Attia Al zahrani. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncommercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area on Bio-Chemical Changes in Hyperglycemic Rats

Dr. Lobna Saad Mohammed Abd Elmeged^a & Dr. Nora Mesfer Attia Al zahrani^σ

ABSTRACT

Background: Leafy vegetables are among the most nutritious vegetables on a fresh weight basis and are also among the world's most productive plants in terms of nutritional value per unit area, in part because they grow rapidly, allowing several crops or harvests in a season.

Objective: This investigation aims to therapeutic effects of vegetable growths (green on ground parts) of tuberous plants such as greens of taro, carrot, sugar beet, sweet potato, and potato leaves and stem are scant.

Design: Thirty five rats Sprague Dawley white male albino rats, weighing about $150 \pm 10g$ were used in the study. The experiment was performed in Animal House. All rats were fed for one week on basal diet before starting the experiment, then divided into two main groups, the first group (n=5 rats) was fed on the basal diet only as a control negative (C-ve) normal rats for 28 days. The rats of second main group (n=30 rats) were injected alloxan. The obtained data were statistically analyzed using computerized SPSS.

Results: Hyperglycemic rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stems 5% recorded significant decrease in Serum GPT compared to control (+ve) Hence there was a significant increase in control (+) compared to control (-) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % denoted significant decreases in serum glucose compared to control (+)). Diabetic rats fed on taro, carrot sugar beet, sweet potato and potato leaves and stems 5% diet denoted significant decreases in U.acid compared to control (+ve) rats.

Recommendation: This study suggested to use vegetable greens of tuberous plants, namely that of taro, carrot, sugar beet, sweet potato and potato for hyperglycemic patients.

Keywords: vegetable greens of tuberous plants, diabetic, biochemical change.

Author α σ : Assistant Professor, Department of Home Economics, Faculty of Sciences and Arts, Al Baha University-KSA.

I. INTRODUCTION

Leafy vegetables are among the most nutritious vegetables on a fresh weight basis and are also among the world's most productive plants in terms of nutritional value per unit area, in part because they grow rapidly, allowing several crops or harvests in a season. Although some of the constituents are lost during cooking, they still contribute significant amounts of provitamins A and C and several minerals. Leafy vegetables are also good for the eyes. Age-related macular degeneration is a leading cause of blindness among individuals over the age of 50. A research study in Massachusetts found that people who ate spinach, collards, and other dark green, leafy vegetables five or six times a week had about a 43 percent lower risk of the disease than those who ate it less than once a month. The typical shelf life for most leaf vegetables is ten to fourteen days. (Lee et al., 2008). In 2000, according to the World Health Organization, at least 171 million people worldwide suffer from diabetes, or 2.8% of the population. Its incidence is increasing rapidly,

and it is estimated that by 2030, this number will almost double. Diabetes mellitus occurs throughout the world, but is more common (especially type 2) in the more developed countries. The greatest increase in prevalence is, however, expected to occur in Asia and Africa, where most patients will probably be found by 2030. (Pignone et al, 2010). The increase in incidence of diabetes in developing countries follows the trend of urbanization and lifestyle perhaps importantly changes. most ิล "Western-style" diet. This has suggested an environmental (i.e., dietary) effect, but there is little understanding of the mechanism(s) at present, though there is much speculation, some of it most compellingly presented. (Wild et al, 2004).

- Aim of study

Identification of the therapeutic effect of some tuberous plants found in al-Baha area on bio-chemical changes in hyperglycemic rats-*Materials And Methods*

II. MATERIALS

2.1 Plants

Preparation of vegetable greens of tuberous plants: The plants which used to obtain leaves and stems were:

- 1. Colocasia esculenta, schott, (Taro), family (Araceae).
- 2. Beta vulgaris,L, (Sugar beet), family (Chenopodiaceae).
- 3. Daucus carota var.sativa, (Carrot), family (Umbelliferae).
- 4. Ipomoea batato, Lam.(Sweet potato), family(Convolvulaceae).
- 5. Solarium tuberosum, L. (Potato), family (Solanaceae).

Leaves and stem of above noted plants obtained fresh from field, and cleaned thoroughly by washing. Then, they were sun dried and milled.thoroughly by washing. Then, they were dried and milled 1.2. Diets

2.2 Basal Diet

The basal diet was prepared according to *Reeves et al., (1993).* It was consisted of 20% protein(casein), 10% sucrose, 4.7% corn oil, 2% choline chloride, 1% vitamin mixture, 3.5% salt mixture and 5% fiber (cellulose). The remainder was corn starch as it was recorded in table (1).

Table (a): The composition of basal diet

Compounds	Amount
Protein	20%
Corn oil	4.7 %
Salt mixture	3.5 %
Vitamin	1 %
mixture	1 70
Cellulose	5 %
Choline	2 %
chloride	2 /0
Sucrose	10%
Corn starch	Up to 100%

Source: Reeves et al., (1993).

Table (b): The composition of salt mixture (g/100 g):

Compounds	Amount
CaCO ₃	600 mg
K2 HPO4	645 mg
Ca HPO4. 2H2O	150 mg
MgSO4.2H2O	204 mg
Nacl	334 mg
Fe (C6H5O7) 26H2O	55 mg
Kl	1.6 mg
MnSO4.4H2O	10 mg
Zncl2	0.5 mg
Cu SO4. 5H2O	0.06 mg

Source: (Hegsted et al., 1941).

Table (c): The composition of vitamin mixture

Vitamin	Amount
Vitamin E	10 Iu
Vitamin K	0.50 Iu
Vitamin A	200 Iu
Thiamin	0.50 mg
Pyridoxine	1.00 mg
Niacin	4.00 mg
Calcium panthothenic acid	0.40 mg

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

22

Vitamin D	100 Iu
Choline chloride	200 mg
Folic acid	0.02 mg
Inositol	24 mg
Para-amino – benzoic acid	0.02 mg
Vitamin B12	2.00 μg
Biotin	0.02 mg

2.3 Experimental diet

Experimental diet prepared from basal diet plus the powdered plants added at a percentage of 5% and is shown in table (4).

Source: (Campbell, 1963).

Component (g)	Basal diet	5% taro leaves and stem	5% carrot leaves and stem	5% sugar beet leaves and stem	5% sweet potato leaves and stem	5% potato leaves and stem
Test ingredients		5	5	5	5	5
Casein	20	20	20	20	20	20
Corn oil	4.7	4.7	4.7	4.7	4.7	4.7
Mineral mix	3.5	3.5	3.5	3.5	3.5	3.5
Vitamin mix	1	1	1	1	1	1
Cellulose	5	5	5	5	5	5
Cholin chloride	2	2	2	2	2	2
Sucrose	10	10	10	10	10	10
Corn starch	Up to 100	Up to 100	Up to 100	Up to 100	Up to 100	Up to 100

Table (e): The composition of basal and Experimental diet:-

2.4 Diabetic rats

Diabetes was induced in normal healthy male albino rats by intra- peritoneal injection of alloxan 150 mg / kg body weight, according to the method described by (Desai and Bhide, 1985). One week after obtained were samples blood the injection of alloxan, fasting to estimate fasting serum glucose. Rats having fast serum glucose more than 190 mg /dl were considered diabetics (NDDG, 1994).

2.5 Rats

Thirty five rats Sprague Dawley white male albino rats, weighing about $150 \pm 10g$ were used in the study. The animals were obtained from Helwan Experimental Animals Station. Rats were housed in wire cages under the normal laboratory condition and fed on basal diet for a week as adaptation period. Diet was given in nonscattering feeding cups to avoid loss or contamination of food, water was provided to the rats by means of glass tubes projecting through the wire cage from an inverted bottle supported to one side of the cage.

III. METHODS

3.1. Preparation of plant

The plant materials were grinded in a mixer to give a powder and were kept in dusky stoppered glass bottles in a cool and dry location till use, according to Russo (2001), who reported that all herbs and plants are best kept in a cool, dry and dark location to reduce oxidation of their contents.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

3.2 Grouping and feeding of rats

The experiment was performed in Animal House. All rats were fed for one week on basal diet before starting the experiment, then divided into two main groups, the first group (n=5 rats) was fed on the basal diet only as a control negative (C –ve) normal rats for 28 days. The rats of second main group (n=30 rats) were injected alloxan. The rats were divided into 7 groups each of 5 rats. The groups of rats were as follows:

Group (2): Hyperglycemic control positive group, in which alloxan injected rats fed on basal diet (control "+").

Group (3): Hyperglycemic group fed on basal diet + taro leaves and stem 5%.

Group (4): Hyperglycemic group fed on basal diet + carrot leaves and stem 5%.

Group (5): Hyperglycemic group fed on basal diet + sugar beet leaves and stem 5%.

Group (6): Hyperglycemic group fed on basal diet + sweet potato leaves and stem 5%.

Group (7): Hyperglycemic group fed on basal diet + potato leaves and stem 5%.Induction of liver intoxication in rats.

Thirty five rats Sprague Dawley white male albino rats, weighing about 150 ± 10 g were used in the study. The animals were obtained from Helwan Experimental Animals Station. Rats were housed in wire cages under the normal laboratory condition and fed on basal diet for a week as adaptation period. Diet was given in nonscattering feeding cups to avoid loss or contamination of food, water was provided to the rats by means of glass tubes projecting through the wire cage from an inverted bottle supported to one side of the cage.

3.3 Blood sampling

At the end of the experiment period (28 days) rats were sacrificed by ether an anesthesia. Blood samples were obtained by retro-orbital method in a clean dry centrifuge tube. They were left to clot by standing at room temperature for 20 minutes, and then centrifuged at 1500 r.p.m for 15 minutes. Serum samples were collected by a dry clean syringe, poured in Wisserman tubes and then kept frozen in a refrigerator at -10°C till biochemical analysis. Rats were thereafter opened, liver, spleen, heart, lungs and kidneys removed and washed in saline solution, then dried and weighted. Relative weights of mentioned organs were calculated using the following formula

Relative organ weight = $\frac{\text{Organ weight}}{\text{body weight}} \times 100$

For fixation prior to histopathological investigation, organs were kept in formalin solution (10% V/V) according to methods described by Drury and Wallington (1967).

2.5 Biological Evaluation

During the period of the experiment, all rats were weighed once a week and the consumed diets were recorded everyday (daily food intake). At the end of the experiment, biological evaluation of the experimental diets was carried out by determination of body weight gain% (BWG%) and food efficiency ratio (FER). According to Chapman et al., (1959), using the following formulas:-

$$BWG \% = \frac{Final weight - Initial weight}{Initial weight} \times 100$$

$$FER = \frac{Body weight gain (g)}{Food Intake (g)}$$

2.6 Biochemical Analysis

At the end of experiment of period blood samples were collected after 12 hours fasting from the portal vein; the rats were sacrificed after being ether anesthetized. Blood samples were received into clean dry centrifuge tubes, and left to clot at room temperature, then centrifuged for 10 minutes at 3000 rpm to separate the serum. Serum was carefully aspirated and transferred into clean cuvet tubes and stored frozen at 20 o C for analysis (Malhotra, 2003). All serum samples were analyzed for determination the following

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

parameters: Plasma total protein, plasma albumin, alkaline phosphatase, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), uric acid, creatinine, urea, triglyceride (T.G), total cholesterol (T.C), HDL, glucose, VLDL = T.G /5, LDL = [T.C - (HDL +VLDL)].At the same time, the organs: Heart, lungs, liver, spleen, and kidneys removed, cleaned, weighted, and stored in formalin solution (10 %) for histopathological investigation as the method mentioned by Drury and Wallington (1980).

Determination of liver function}total protein, albumin, alkaline phosphates (ALP), Glutamic Oxaloacetic Transaminase (GOT) and Glutamic pyruvic Transaminase (GPT)}, kidney function (urea, uric acid and creatinine). total lipids (total cholesterol, triglycerides, HDL, serum glucose:

- 1. Total protein was determined by Biuret method according to the method described by Weichselbaum, 1964).
- 2. Albumin was determined in serum according to the method described by Doumas and Biggs (1971).
- 3. Determination of alkaline phosphatase (ALP) was carried out by kinetic method according to Rec. (1972).
- Determination of SGOT was carried out as follows Glutamic + Oxaloacetic Transaminase ά ketoglutaric acid + Aspartic acid according to Reitman and Frankel (1957).
- Determination of SGPT was carried out as follows Glutamic + oxaloacetic Transaminase ά ketoglutaric acid + Alanine according to Reitman and Frankel (1957).
- 6. Determination of uric acid was carried out by enzymatic colorimetric method according to Fossati (1982).
- 7. Determination of creatinine was carried out by colorimetric method according to Henry (1974).
- 8. Determination of urea was achieved by enzymatic method according Patton (1977).
- 9. Determination of triglycerides was carried out by enzymatic colorimetric test according to Trinder (1969).

- 10. Determination of HDL- cholesterol was carried out according to Rhichmond (1973).
- 11. Determination of Cholesterol was carried out by enzymatic colorimetric test (CHOD-PAP) according to Rhichmond (1973).
- 12. Calculation of LDL cholesterol and VLDL cholesterol Friede wald et al., (1972).
- 13. Very low density lipoprotein (VLDL Triglycerides cholesterol) /5. LDL = cholesterol = Total cholesterol - (HDL cholesterol + VLDL cholesterol).Calculation of Atherogenic index: This index was calculated as the VLDL + LDL cholesterol / HDL ratio according to the formula of Kikuchi-Hayakawa et al., (1998).
- 14. Determination of glucose was carried out by enzymatic colorimetric method according to Trinder (1969).

5- Histopatlioiogical examination

15. Specimens from (liver and heart) were collected from, studied rats by the end of experimental period, fixed in 15 % neutral buffered formalin (PH 7.0) (Drury and wallington, 1980), dehydrated in ethyl alcohol, cleared in xylol and embedded in paraffin. 6 mM sections were prepared and stained with Hematoxylins and Eosin (Carleton, 1976).

2.7 Statistical analysis

The obtained data were statistically analyzed using computerized SPSS (Statistic Program Sigmastat, statistical soft-ware, SAS Institute , Cary, NC). Effects of different treatments were analyzed by one way ANOVA (Analysis of variance) test using Duncan's multiple range test and p<0.05 was used to indicate significance between different groups, the following formulas were used (Snedecor and Cochran, 1967).

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

III. RESULTS AND DISCUSSION

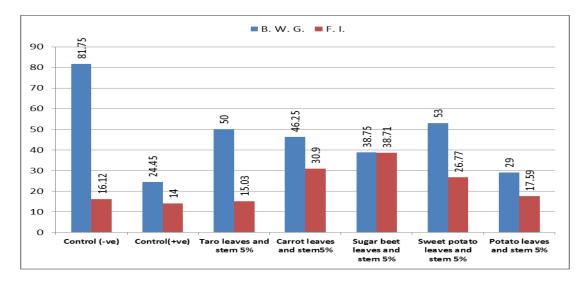
- Biological Results

3.1 Effect of on ground green growths on body weight gain (B. W. G.), food intake (F. I.), and food efficiency ratio (F. E. R.).

Data listed in table (1) and figure (1) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on B. W. G., F. I., F. E. R., of hyperglycemic rats.

These results denote that in control (-ve) normal rats body weight gain B. W. G. was 81.75 ± 2.50 g while in control (+ve) diabetic rats injected by alloxan without treatment was 24. 45 ± 1.84 g. These results indicated a significant decrease in control (-ve) B. W. G compared to control (+ve) groups. Diabetic rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stem recorded significant increase compared to control (+ve) which were 50. 0 \pm 1. 96, 46. 25 \pm 1. 09, 38. 75 \pm 1. 95, 53. 0 \pm 2. 49, and 29. 0 \pm 1. 68 g respectively.

Concerning food intake (F. I.): Data of table (1) and figure (1) showed that in control (-ve) normal rats food intake (F. I.) was 16. 13 ± 0.81 g, While in control (+ve) diabetic rats injected with alloxan without treatment it was 14. 0 ± 0.92 g. These


result revealed significant decrease in control (+ve) compared to control (-ve). Diabetic rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stem 5 % reflected significant increase compared to control (+ve) group, values were 15. 03 ± 0.44 , 30. 9 ± 1.31 , 38. 71 ± 1.76 , 26. 77 ± 0.38 , 17. 59 ± 0.69 g respectively.

As for the food efficiency ratio (F. E. R.): Data of table (1) and observed that in control (-ve) normal rats food efficiency ratio (F. E. R.) was 0. 18 \pm 0. 03, while in control (+ve) diabetic rats without treatment it was 0. 073 ± 0.009 . These result reflected significant decrease in control (+) compared to control (-ve) group. Diabetic rats fed on taro leaves and stem 5 % diet showed significant increase compared to control (+ve), but in diabetic rats fed on carrot, sugar beet, and potato leaves and stem 5% showed significant decreases compared to control (+), which were 0. $065 \pm 0.024, 0.033 \pm 0.012, and 0.053 \pm 0.032$ respectively. On the other hand diabetic rats fed on sweet potato leaves and stem 5 % revealed non-significant changes compared to potato leaves & stem diet which were 0. 07 ± 0.008 , and 0. 053 \pm 0. 032 respectively. data of table (1) were in line with that found by Ahmed, Reham (2007) working with the effect of plants on hyperglycemic rats.

Table (1): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on B. W. G., F. I., F. E. R. of hyperglycemic rats.

Parameters Groups	B. W. G. (g)	F. I. (g)	F. E. R.
Control (-ve)	81.75±2.50a	16.12±0.81d	0.18±0.030a
Control(+ve)	24.45±1.84f	14.0±0.92f	0.073±0.009d
Taro leaves and stem 5%	50.0±1.96b	15.03±0.44e	0.115±0.003b
Carrot leaves and stem 5%	46.25±1.09c	30.9±1.31b	0.065±0.024c
Sugar beet leaves and stem 5%	38.75±1.95d	38.71±1.76a	0.033±0.012d
Sweet potato leaves and stem 5%	53.0±2.49b	26.77±0.38c	0.07±0.008c
Potato leaves and stem 5%	29.0±1.68e	17.59±0.69d	0.053±0.032c

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

Figure (1): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on B. W. G., F. I., F. E. R. of hyperglycemic rats.

3.2 Effect on relative organs weight

Data listed in table (2) and figure (2) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on relative organs weight of hyperglycemic rats.

3.2.1 Relative weight of liver

Data presented in table (2) and figure (2) showed that for control (-ve) normal rats liver (%) was 3. 68 ± 0.3 %, while in control (+ve) diabetic rats (hyperglycemic rats) without treatment was 4. 15 \pm 0. 14 %. These result denote that there was a significant increase in control (+ve) compared to control (-ve) liver %. Alloxan injected rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stem 5% diets recorded significant decrease of liver % compared to control (+ve) group, values were 3. 40 \pm 0. 08, 3. 19 \pm 0. 06, 3. 99 \pm 0. 19, 3. 24 \pm 0. 21, and 3. 73 \pm 0. 19 % respectively. These vegetable greens of tuberous plants seem to correct the liver inflammation.

3.2.2 Relative heart weight

Data of table (2) and figure (2) showed that for control (-ve) normal rats heart % was 0. 35 ± 0 . 03 %, while for control (+ve) diabetic rats without treatment it was 0. 42 ± 0 . 02 %. These result denote that there was significant increase in control (+ve) rats compared to control (-ve) group. Hyperglycemic rats and fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stems 5% observed significant decrease compared to control (+ve) group which were 0. 39 ± 0.03 , 0. 38 ± 0.02 , 0. 39 ± 0.04 , 0. 37 ± 0.04 , 0. $37 \pm$ 0. 02 % respectively.

3.2.3 Spleen relative weight

Data of table (2) and figure (2) obtained results showed that in control (-ve) normal rats spleen % was 0. 44 \pm 0. 05, while in control (+ve) hyperglycemic rats without treatment it was 0. 48 \pm 0. 02 % indicating inflammation. These result reflected that there was a significant increase in control (+ve) rats spleen % compared to control (-ve). Hyperglycemic group fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stems 5% reflected significant decrease of spleen % compared to both control (+ve) & control (-ve),values were 0. 36 \pm 0. 04, 0. 35 \pm 0. 02, 0. 42 \pm 0. 01, 0. 4 \pm 0. 04, and 0. 38 \pm 0. 03 % respectively.

3.2.4. Relative kidney weight

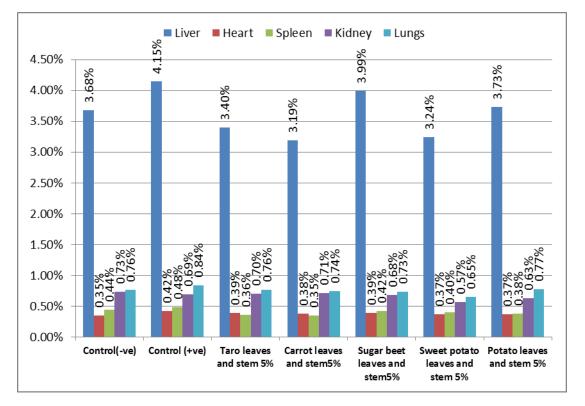
The results of table (2) figure (2) revealed that in control (-ve) normal rats kidney % was 0. 73 ± 0 . 06, while in control (+ve) hyperglycemic rats without treatment it was 0. 69 ± 0 . 02 % indicating atrophy. Results denoted a significant decrease in control (+) compared to control (-ve). Hyperglycemic and fed on sugar beet, sweet potato, and potato leaves and stems 5 % kidney % revealed pronounced increase compared to

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

control (+ve) rats which were 0. 68 ± 0.01 , 0. 57 ± 0.02 , 0. 63 ± 0.01 % respectively. On the other hand in hyperglycemic rats fed on taro and carrot leaves and stems 5% reflected significantly slight increase compared to control (+ve) which were 0. 70 ± 0.05 , 0. 71 ± 0.02 , and 0. 69 ± 0.02 respectively.

3.2.5 The relative lungs weight

The obtained data of table (2) figure (2) indicated that in control (ve) normal rats lungs % was 0. 76±0. 08 % while in control (+ve) diabetic rats without treatment it was0. 84 ± 0. 02%. it could be observed that there was a significant increase in control (+) compared to control (-ve). As regards lungs %. hyperglycemic rats fed on carrot, sugar beet, and sweet potato leaves and stems showed significant decrease of lungs %compared to control (-ve) & control (-ve) groups which were 0. 74 ± 0.07 , 0. 73 ± 0.04 , and 0. 65 ± 0.03 % respectively. On the other hand diabetic rats fed on taro and potato leaves and stems 5% revealed non-significant differences compared to control (-ve) group values were 0. 76±0. 07, 0. 77±0. 08,and 0. 76±0. 08 % respectively. The data of table (2) went parallel to that of Ahmed, Reham (2016). It should be noted that hypercholesterolemia caused atrophy of liver, heart and lungs, while hypercholesterolemia resulted in inflammation.


Table (2): Effect of taro, carrot, sugar beet, Sweet potato, and potato's leaves and stem on relative organs weight in hyperglycemic rats.

Parameters Groups	Liver (%)	Heart (%)	Spleen (%)	Kidney (%)	Lungs (%)
Control(-ve)	3.68 ± 0.13^{c}	$0.35 {\pm} 0.03^{d}$	0.44 ± 0.05^{b}	0.73 ± 0.06^{a}	0.76 ± 0.08^{b}
Control (+ve)	4.15 ± 0.14^{a}	0.42 ± 0.02^{a}	0.48 ± 0.02^{a}	0.69 ± 0.02^{c}	$0.84{\pm}0.02^{a}$
Taro leaves and stem 5%	3.40 ± 0.08^{d}	0.39 ± 0.03^{b}	0.36 ± 0.04^{c}	0.70 ± 0.05^{b}	0.76 ± 0.07^{b}
Carrot leaves and stem 5%	3.19 ± 0.06^{f}	0.38 ± 0.02^{b}	0.35 ± 0.02^{c}	0.71 ± 0.02^{b}	0.74 ± 0.07^{c}
Sugar beet leaves and stem 5%	3.99 ± 0.19^{b}	0.39 ± 0.04^{b}	0.42 ± 0.01^{b}	0.68 ± 0.01^{c}	0.73 ± 0.04^{c}
Sweet potato leaves and stem 5%	3.24 ± 0.21^{e}	0.37 ± 0.04^{c}	0.4 ± 0.04^{b}	0.57 ± 0.02^{e}	0.65 ± 0.03^{d}
Potato leaves and stem 5%	3.73 ± 0.19^{c}	0.37 ± 0.02^{c}	0.38 ± 0.03^{c}	0.63 ± 0.01^{d}	0.77 ± 0.08^{b}

• Values are expressed as mean ± SD.

• Significant at P> 0.05.

Values which don't share the same letter in each column are significantly different.

Figure (2): Effect of taro, carrot, sugar beet, Sweet potato, and potato's leaves and stem on relative organs weight in hyperglycemic rats.

3.3 Effect on liver enzymes of serum

Data listed in table (3) and figure (3) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on liver of serum enzymes (GOT, GPT, and ALP) of hyperglycemic rats.

3.3.1 Serum GOT

The obtained data show that in control (-ve) normal rats GOT was 48. 75 \pm 1. 25(U/L), while in the control (+ve) diabetic rats without treatment it was 67. 25 \pm 0. 60(U/L). These results denoted a significant increase in control (+) compared to control (-ve) rats. Hyperglycemic rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stems 5% recorded significant decrease compared to control (+ve) group which were 25. 75 \pm 1. 62, 30. 25 \pm 1. 49, 57. 75 \pm 1. 45, 35. 75 \pm 1. 13, and 27. 5 \pm 1. 67 (U/L) respectively.

3.3.2 Serum GPT

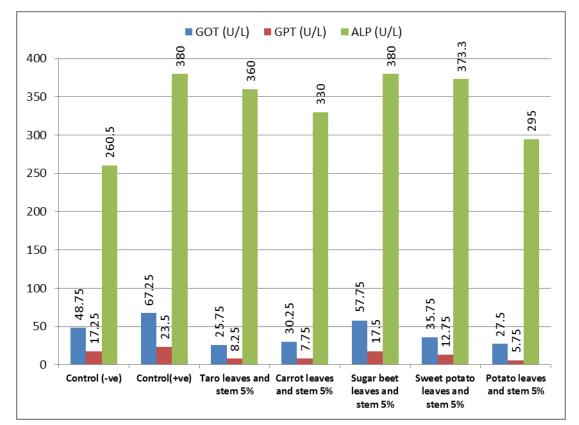
It could be observed that in control (-ve) normal rats GPT was 17. 25 ± 0.63 (U/L), while in the control (+ve) hyperglycemic rats without

treatment was 23. 5±0. 11 (U/L). These results indicated that there was a significant increase in control (+) compared to control (-ve) rats. Hyperglycemic rats fed on taro, carrot, sugar beet, sweet potato, and potato leaves and stems 5% recorded significant decreases compared to control (+ve) group, values were 8. 25 ± 0. 32, 7. 75 ± 0. 63, 17. 5 ± 0. 29, 12. 75 ± 0. 65, 5. 75 ± 0. 18 (U/L) respectively.

3.3.3 Serum ALP

The results of table (3) and figure (3) showed that in control (-ve) normal rats ALP was 260. $5 \pm$ 17. 06 (U/L), while in control (+ve) diabetic rats without treatment was 380. 0 ± 28. 57 (U/L). These results revealed that there was a significant increase in control (+) compared to control (-ve) group. Diabetic rats fed on taro, carrot, sweet potato, and potato leaves and stems 5% indicate significant decreases compared to control (+ve) group, values were 360. 0 ± 27. 39, 330. 0 ± 28. 57, 373. 3 ± 49. 39, and 295. 0 ± 13. 23 (U/L). On the other hand in diabetic rat and fed on sugar beet leaves and stems 5% there was non-

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats


significant changes compared to control (+ve) group showing values of $380.0 \pm 49.49, 380.0 \pm 28.57$ (U/L) respectively. The changes of liver

enzymes in serum were in line with that reported by Lee, et al (2017).

Table (3): Effect of taro, carrot, sugar beet, sweet potato, and potato's leaves and stem on liver enzymes (GOT, GPT, and ALP) of hyperglycemic rats.

Parameters Groups	GOT (U/L)	GPT (U/L)	ALP (U/L)
Control (-ve)	$48.75 \pm 1.25^{\circ}$	17.25 ± 0.63^{b}	260.5 ± 17.06^{f}
Control(+ve)	67.25 ± 0.60^{a}	$23.5{\pm}0.11^{\mathrm{a}}$	380.0 ± 28.57^{a}
Taro leaves and stem 5%	25.75 ± 1.62^{e}	8.25 ± 0.32^{d}	$360.0\pm27.39^{\circ}$
Carrot leaves and stem 5%	30.25 ± 1.49^{e}	7.75 ± 0.63^{d}	330.0 ± 28.57^{d}
Sugar beet leaves and stem 5%	57.75 ± 1.45^{b}	17.5 ± 0.29^{b}	380.0 ± 49.49^{a}
Sweet potato leaves and stem 5%	35.75 ± 1.13^{d}	$12.75 \pm 0.65^{\circ}$	373.3 ± 49.39^{b}
Potato leaves and stem 5%	27.5 ± 1.67^{e}	5.75 ± 0.18^{e}	295.0 ± 13.23^{e}

- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

Figure (3): Effect of taro, carrot, sugar beet, sweet potato, and potato's leaves and stem on liver enzymes (GOT, GPT, and ALP) of hyperglycemic rats.

3.4 Effect on (T. protein, Albumin, Globulin, and Alb/Glob)

Data present in table (4) and figure (4) show the effect of taro, carrot, sugar beet, sweet potato, and

potato leaves and stem on (T. protein, Albumin, Globulin, and Alb/Glob) of hyperglycemic rats.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

30

3.4.1 T. protein

The obtained data revealed that in control (-ve) normal rats T. protein was 10. 9 ± 0.56 (g/dl), while in the control (+ve) diabetic rats without treatment it was 9.75 \pm 0.37 (g/dl). These results indicated that there was a significant decrease in control (+) compared to control (-ve) values. Diabetic rats fed on taro, carrot, sugar beet, and potato leaves and stems 5% observed significant increase of T. protein compared to control (+ve) group, which were 11. 25 ± 0.99 , 10. 73 ± 0.32 , 10. 7 \pm 0. 55, and 10. 65 \pm 0. 60 (g/dl) respectively. On the other hand in diabetic rat and fed on sweet potato leaves and stems 5% diet showed significant decrease T. protein compared to control (+ve) group, which were 7. 93 ± 0.78 , and 9.75 \pm 0.37 (g/dl) respectively.

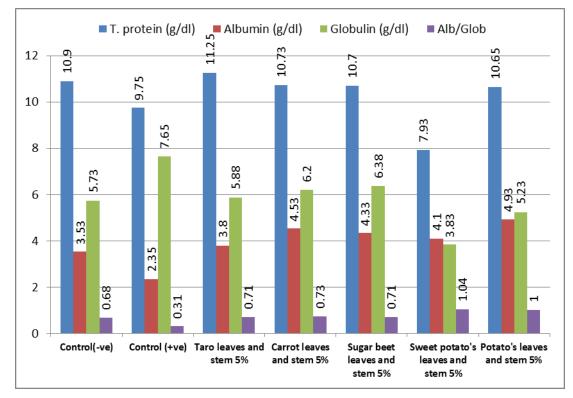
3.4.2 Albumin

Data presented in table (4) and figure (4) indicated that in control (-ve) normal rats albumin was 3. $53 \pm 0.41(g/dl)$, while in the control (+ve) diabetic rats without treatment it was 2. 35 ± 0.19 (g/dl). This revealed significant decrease in control (+ve) albumin compared to control (-ve) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5% revealed significant increase compared to control (+ve) group, which were 3. 8 \pm 0. 16, 4. 53 \pm 0. 29, 4. 33 \pm 0. 48, 4. 1 \pm 0. 54, and 4. 93 \pm 0. 35 (g/dl) respectively.

3.4.3 Globulin

Data present in table (4) and figure (4) showed that in control (-ve) normal rats globulin was 5. 73 \pm 0. 71 (g /dl), while in the control (+ve) diabetic rats without treatment it was 7. 65 \pm 0. 19 (g /dl). These data showed that there was a significant increase in control (+) compared to control (-ve) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet revealed significant decrease compared to control (+ve) rats, which were 5. 88 \pm 0. 21, 6. 2 \pm 0. 11, 6. 38 \pm 0. 63, 3. 83 \pm 0. 42, and 5. 23 \pm 0. 55 (g / dl) respectively. The best results was for diabetic rats fed on sweet potato leaves and stems 5% diet as globulin was 3. 83 \pm 0. 42 (g / dl),while in control (-ve) it was 5. 73 \pm 0. 71 (g /dl) respectively.

3.4.4 ALB /Glob ratio


Data presented in table (4) and figure (4) indicated that in control (-ve) normal rats Alb/ Glob was 0. 68 ± 0.18 (g/dl), while in the control (+ve) diabetic rats without treatment it was 0. 31 \pm 0. 02 (g /dl). These results reflected a significant decrease in control (+ve) compared to control (-ve) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet showed significant increases compared to control (+ve) group, which were 0.71 \pm 0. 12, 0. 73 \pm 0. 05, 0. 71 \pm 0. 12, 1. 04 \pm 0. 05,and 1. 00 \pm 0. 20 (g/dl) respectively. The T. protein, albumin, globulin & Alb/Glob changes given in table (21) and Fig. (12) a & b concurred with that reported by Abidin, (2012) & Abd El-Aziz, and Om-Kalsom (2015).

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

Table (4): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on (T. protein, Albumin, globulin, and Alb/Glob) of hyperglycemic rats.

Parameters Groups	T. protein (g/dl)	Albumin (g/dl)	Globulin (g/dl)	Alb/Glob
Control(-ve)	10.9 ± 0.56^{b}	3.53 ± 0.41^{d}	$5.73 \pm 0.71^{\circ}$	$0.68 \pm 0.18^{\circ}$
Control (+ve)	9.75 ± 0.37^{d}	$2.35{\pm}0.19^{e}$	7.65 ± 0.19^{a}	0.31 ± 0.02^{d}
Taro leaves and stem 5%	11.25 ± 0.99^{a}	$3.8 \pm 0.16^{\circ}$	$5.88 \pm 0.21^{\circ}$	0.71 ± 0.12^{b}
Carrot leaves and stem 5%	10.73 ± 0.32^{b}	4.53 ± 0.29^{b}	6.2 ± 0.11^{b}	0.73 ± 0.05^{b}
Sugar beet leaves and stem 5%	10.7 ± 0.55^{b}	4.33 ± 0.48^{b}	6.38 ± 0.63^{b}	0.71 ± 0.12^{b}
Sweet potato's leaves and stem 5%	7.93±0.78°	4.1±0.54 ^c	3.83 ± 0.42^{e}	1.04 ± 0.05^{a}
Potato's leaves and stem 5%	10.65 ± 0.60^{b}	4.93 ± 0.35^{a}	5.23 ± 0.55^{d}	1.00 ± 0.20^{a}

- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

3.5 Effect on kidney function

Data presented in table (5) and figure (5) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on kidney function (urea, creatinine and U. acid) of hyperglycemic rats.

3.5.1 Urea

32

The obtained data in table (5) and figure (5) indicated that in control (-ve) normal rats urea was 25. 58 ± 1.14 (mg /dl). While in the control

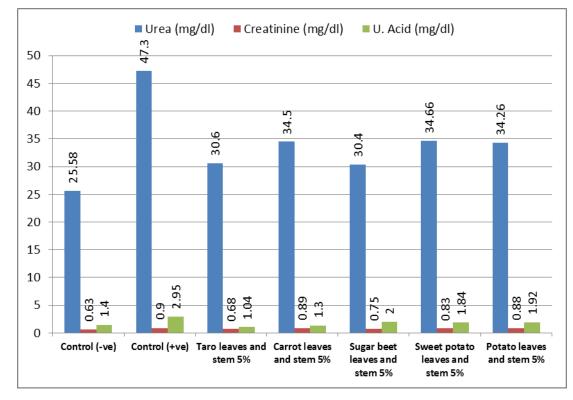
(+ve) diabetic rats without treatment it was 47. 30 \pm 0. 89(mg /dl). These result showed that there was a significant increase of urea in control (+) compared to control (-ve) rats serum. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5% diet showed significant decreases of urea compared to control (+ve) rats, which were 30. 60 \pm 1. 21, 34. 50 \pm 0. 87, 30. 40 \pm 0. 61, 34. 66 \pm 0. 54, 34. 26 \pm 0. 92 (mg /dl) respectively.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

3.5.2 Creatinine

These results of table (5) and figure (5) revealed that in control (-ve) normal rats creatinine was 0. 63 \pm 0. 05(mg /dl), while in the control (+ve) diabetic rats without treatment it was 0. 90 \pm 0. 02 (mg /dl). Such data reflected a significant increase in control (+) compared to control (-ve) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5% diet showed significant decreases compared to control (+ve) rats, which were 0. 68 \pm 0. 05, 0. 89 \pm 0. 15, 0. 75 \pm 0. 07, 0. 83 \pm 0. 06, and 0. 88 \pm 0. 09 (mg /dl) respectively. was 2. 95 ± 0. 33(mg/dl). These result reflected a significant increase in control (+) compared to control (-ve) rats. Diabetic rats fed on taro, carrot sugar beet, sweet potato and potato leaves and stems 5% diet denoted significant decreases compared to control (+ve) rats, which were 1. 04 ± 0. 02, 1. 3 ± 0. 13, 2. 00 ± 0. 13, 1. 84 ± 0. 12, and 1. 92 ± 0. 14(mg/dl) respectively. The best result revealed in case of taro leaves and stems 5% diet which was 1. 04 ± 0. 02 (mg/dl). The changes of urea, creatinine and uric acid changes went parallel to that reported by Abd El-Aziz, and Om-Kalsom (2015) working on broccoli for lowering serum glucose and total cholesterol.

3.5.3 U. acid


It could be observed that in control (-ve) normal rats U. acid was 1. 4 ± 0.12 (mg /dl), while in the control (+ve) diabetic rats without treatment it

<i>Table (5):</i> Effect of taro, carrot, sugar beet, sweet potato, and potato's leaves and stem on kidney
function (Urea, creatinine, and U. acid) in hyperglycemic rats.

Parameters Groups	Urea (mg/dl)	Creatinine (mg/dl)	U. Acid (mg/dl)
Control (-ve)	25.58 ± 1.14^{d}	0.63 ± 0.05^{d}	1.4 ± 0.12^{d}
Control (+ve)	47.30 ± 0.89^{a}	0.90 ± 0.02^{a}	2.95 ± 0.33^{a}
Taro leaves and stem 5%	$30.60 \pm 1.21^{\circ}$	0.68 ± 0.05^{d}	$1.04{\pm}0.02^{e}$
Carrot leaves and stem 5%	34.50 ± 0.87^{b}	0.89 ± 0.15^{b}	1.3 ± 0.13^{d}
Sugar beet leaves and stem 5%	$30.40\pm0.61^{\circ}$	$0.75 \pm 0.07^{\circ}$	2.00 ± 0.13^{b}
Sweet potato leaves and stem 5%	34.66 ± 0.54^{b}	0.83 ± 0.06^{b}	$1.84 \pm 0.12^{\circ}$
Potato leaves and stem 5%	34.26 ± 0.92^{b}	0.88 ± 0.09^{b}	$1.92 \pm 0.14^{\circ}$

- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

Figure (5): Effect of taro, carrot, sugar beet, sweet potato, and potato's leaves and stem on kidney function (Urea, creatinine, and U. acid) in hyperglycemic rats.

3.6 Effect on some lipids profile

Data presented in table (6) and figure (6) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on some lipids profiles (T. cholesterol, T. lipids, triglyceride, and phospholipids) of hyperglycemic rats.

3.6.1 Total cholesterol (T. C)

The data of table (6) and figure (6) revealed that in control (-) normal rats T. cholesterol was 117.78±3. 66 (mg /dl), while in the control (+ve) diabetic rats without treatment it was 160. 00±3. 0 (mg /dl). These data reflected a significant increase in control (+) compared to control (-ve) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet showed significant decreases compared to control (+) rats, which were 120. 5 ± 2. 92, 118. 0 ± 1. 08, 150. 5 ± 2. 10, 106. 75 ± 2. 33, and 118.25 ± 1. 19 (mg /dl) respectively. The best result denoted in diabetic rats fed on sweet potato which was 106. 75 ± 2. 33 (mg/dl).

3.6.2 Serum T. Lipids (T. L)

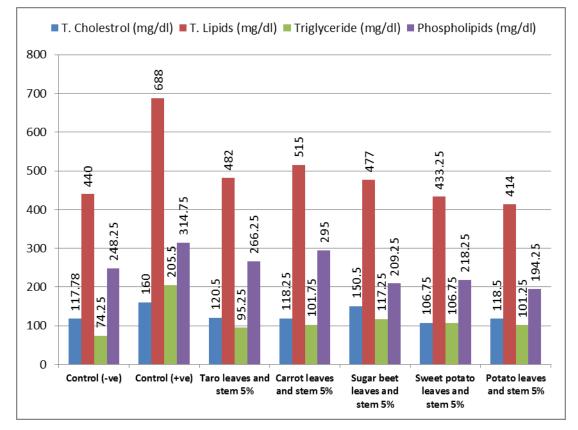
The obtained data presented in table (6) and figure (6) showed that in control (-) normal rats T. Lipid was 440. 0 ± 5 . 36 (mg /dl), while in the control (+ve) diabetic rats without treatment it was 688. 0 ± 4 . 40 (mg/dl). This result reflected a significant increase in control (+) compared to control (-ve) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet showed significant decreases compared to control (+ve) rats, which were 482. 0 ± 3 . 68, 515. 0 ± 2 . 38, 477. 0 ± 1 . 58, 433. 25 ± 1 . 41, and 414. 0 ± 1 . 83 (mg /dl) respectively.

3.6.3 Serum triglyceride (T. G)

Result of table (6) and figure (6) indicated that in control (-) normal rats triglycerides level was 74. $25 \pm 1.11 \text{ (mg /dl)}$, while in the control (+ve) diabetic rats without treatment it was 205. $5 \pm 5.70 \text{ (mg /dl)}$. Such result reflected a significant increase in control (+)rats compared to control (-ve) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5% diet revealed significant decreases compared to

control (+ve) group which were 95. 25 ± 2.50 , 101. 75 ± 3.82 , 117. 25 ± 1.11 , 106. 75 ± 1.65 , and 101. 25 ± 1.65 (mg/dl) respectively.

3.6.4 Serum phospholipids


Data present in table (6) revealed that in control (-) normal rats phospholipids was 248. 25 ± 3 . 23 (mg / dl), while in the control (+ve) diabetic rats without treatment it was 314. 75 ± 4 . 75 (mg / dl).

This result revealed significant increase in control (+) rats compared to control (-ve) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet showed significant decreases compared to control (+ve) group which were 266. 25 ± 3 . 98, 295. 0 ± 3 . 49, 209. 25 ± 1 . 32, 218. 25 ± 1 . 68, 194. 25 ± 1 . 32 (mg /dl) respectively.

Table (6): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on lipids profiles (T. cholesterol, T. lipids, triglyceride, and phospholipids) of hyperglycemic rats.

Parameters Groups	T. Cholestrol (mg/dl)	T. Lipids (mg/dl)	Triglyceride (mg/dl)	Phospholipids (mg/dl)
Control (-ve)	117.78 ± 3.66^{d}	440.0 ± 5.36^{d}	$74.25 \pm 1.11^{\rm f}$	248.25 ± 3.23^{d}
Control (+ve)	160.00 ± 3.0^{a}	688.0 ± 4.40^{a}	205.5 ± 5.70^{a}	314.75 ± 4.75^{a}
Taro leaves and stem 5%	$120.5 \pm 2.92^{\circ}$	482.0±3.68°	$95.25 \pm 2.50^{ m e}$	266.25±3.98°
Carrot leaves and stem 5%	118.25 ± 1.08^{d}	515.0 ± 2.38^{b}	101.75 ± 3.82^{d}	295.0 ± 3.49^{b}
Sugar beet leaves and stem 5%	150.5 ± 2.10^{b}	$477.0 \pm 1.58^{\circ}$	117.25 ± 1.11^{b}	209.25 ± 1.32^{e}
Sweet potato leaves and stem 5%	106.75 ± 2.33^{e}	433.25 ± 1.41^{d}	$106.75 \pm 1.65^{\circ}$	218.25 ± 1.68^{e}
Potato leaves and stem 5%	118.5 ± 1.19^{d}	414.0 ± 1.83^{e}	101.25 ± 1.65^{d}	194.25 ± 1.32^{f}

- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

Figure (6): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on lipids profiles (T. cholesterol, T. lipids, triglyceride, and phospholipids) of hyperglycemic rats.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

3.7. Effect on cholesterol functions

Data listed in table (7) and figure (7) show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on cholesterol function (HDL, LDL, VLDL, and LDL+LDL/HDL) of hyperglycemic rats.

3.7.1 Serum HDL

The obtained data table (7) and figure (7) indicated that in control (-ve) normal rats HDL was 64. $5 \pm 1.97 \text{ (mg/dl)}$, while in the control (+) diabetic rats without treatment it was 50. $5 \pm 1.12 \text{ (mg/dl)}$. These results reflected significant decrease in control (+) rats compared to control (-) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet reflected significant increases compared to control (+) rat which were 60. 0 ± 1.91 , 81. 0 ± 1.71 , 78. 5 ± 1.19 , 67. 75 ± 1.65 , and 71. $25 \pm 1.65 \text{ (mg/dl)}$ respectively.

3.7.2 Serum LDL

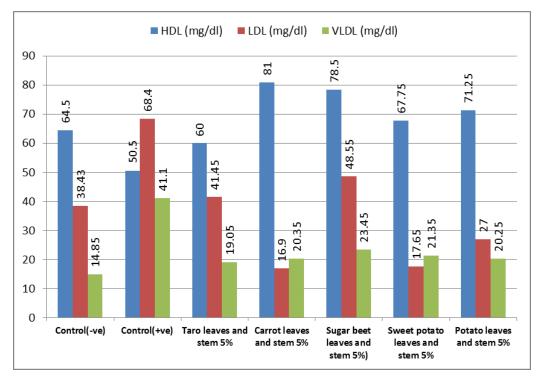
Data observed in Table (7) and figure (7) indicated that in control (-) normal rats LDL was 38.43 ± 2 . 76 (mg /dl), while in the control (+) diabetic rats without treatment it was 68.4 ± 2.58 (mg /dl). These results reflected significant increase in control (+) rats compared to control (-). Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet revealed significant decreases compared to control (+) group which were 41.45 ± 1.98, 16.9 ± 1.21, 48. 55 ± 1.29, 17.65 ± 2.43, and 27.00 ± 1.93 (mg / dl) respectively.

3.7.3 Serum VLDL

The obtained data indicated that in control (-ve) normal rats VLDL was 14. $85 \pm 0.22 \text{ (mg/dl)}$, while in the control (+) diabetic rats without treatment it was 41. $1 \pm 0.14 \text{ (mg/dl)}$. This result showed a significant increase in control (+) rats compared to control (-). Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % diet revealed significant decreases compared to control (+) group which were 19.05

 \pm 0. 50, 20. 35 \pm 0. 77, 23. 45 \pm 0. 22, 21. 35 \pm 0. 74, and 20. 25 \pm 0. 33 (mg/dl) respectively.

3.7.4 Atherogenic index (A. I) [VLDL+LDL / HDL]:


The obtained data Table (7) and figure (7) indicated that in control (-ve) normal rats VLDL+LDL / HDL was 0. 83 ± 0.02 , while in the control (+) diabetic rats without treatment it was 2. 17± 0. 47, These data reflected a significant increase in control (+) rats compared to control (-) group. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % denoted significant decreases compared to control (+) group which were 1. 03 ± 0.18 , 0. $47 \pm$ $0.09, 0.92 \pm 0.04, 0.58 \pm 0.07, \& 0.66 \pm 0.05$ respectively. The changes of lipid functions (Tables 23 & 24 and Figs. 14 & 15 "a, b") concurred with the results of Goldberg, et al (2001) working on the effect of marine algae on lipids profile of hyperglycemic rats.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

Table (7): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on cholesterol function (HDL, LDL, VLDL, and VLDL + LDL / HDL) of hyperglycemic rats.

Parameters Groups	HDL (mg/dl)	LDL (mg/dl)	VLDL (mg/dl)	VLDL+LDL HDL ratio
Control (-ve)	64.5 ± 1.97^{b}	38.43±2.76°	14.85 ± 0.22^{e}	$0.83 \pm 0.02^{\circ}$
Control (+ve)	50.5 ± 1.12^{d}	68.4 ± 2.58^{a}	41.1 ± 0.14^{a}	2.17 ± 0.47^{a}
Taro leaves and stem 5%	$60.0 \pm 1.91^{\circ}$	41.45±1.98 ^c	19.05 ± 0.50^{d}	1.03 ± 0.18^{b}
Carrot leaves and stem 5%	81.0 ± 1.71^{a}	16.9 ± 1.21^{e}	$20.35 \pm 0.77^{\circ}$	0.47 ± 0.09^{e}
Sugar beet leaves and stem 5%	78.5 ± 1.19^{a}	48.55 ± 1.29^{b}	23.45 ± 0.22^{b}	$0.92 \pm 0.04^{\circ}$
Sweet potato leaves and stem 5%	67.75 ± 1.65^{b}	17.65±2.43 ^e	21.35 ± 0.74^{b}	0.58 ± 0.07^{d}
Potato leaves and stem 5%	71.25 ± 1.65^{b}	27.00 ± 1.93^{d}	$20.25\pm0.33^{\circ}$	0.66 ± 0.05^{d}

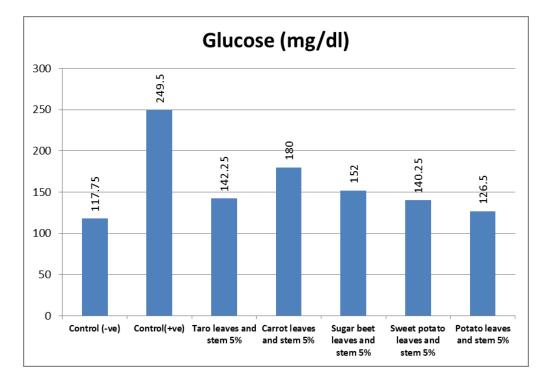
- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

Figure (7): Effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on cholesterol function (HDL, LDL, VLDL, and VLDL + LDL / HDL) of hyperglycemic rats.

3.8 Effect on serum glucose:

Data listed in table (8) and figure (8) Show the effect of taro, carrot, sugar beet, sweet potato, and potato leaves and stem on serum glucose of hyperglycemic rat.

The obtained data showed that in control (-) normal rats serum glucose was 117. 75 ± 2 . 72 (mg /dl), while in the control (+) diabetic rats without treatment it was 249. 50 \pm 2. 20 (mg /dl). Hence there was a significant increase in control (+)


compared to control (-) rats. Diabetic rats fed on taro, carrot, sugar beet, sweet potato and potato leaves and stems 5 % denoted significant decreases compared to control (+) group which were 142. 25 ± 2.175 , 180. 00 ± 2.08 , 152. 00 $\pm 2.$ 04, 140. 25 ± 1.25 , and 126. 50 ± 1.76 (mg /dl) respectively. Potato leaves & stem diet seems to be the best treatment. The results of serum glucose changes were in line with that found by Ahmed, Reham (2016) working on feeding certain plants to hyperglycemic rats.

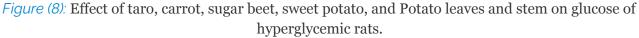

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

Table (8): Effect of taro, carrot, sugar beet, sweet potato, and Potato leaves and stem on glucose of hyperglycemic rats.

Parameter Groups	Glucose (mg/dl)	
Control (-ve)	117.75 ± 2.72^{f}	
Control(+ve)	249.50 ± 2.20^{a}	
Taro leaves and stem 5%	142.25 ± 2.175^{d}	
Carrot leaves and stem 5%	180.00 ± 2.08^{b}	
Sugar beet leaves and stem 5%	$152.00 \pm 2.04^{\circ}$	
Sweet potato leaves and stem 5%	140.25 ± 1.25^{d}	
Potato leaves and stem 5%	126.50 ± 1.76^{e}	

- Values are expressed as mean ± SD.
- Significant at P> 0.05.
- Values which don't share the same letter in each column are significantly different.

IV. RECOMMENDATIONS

- 1. It is suggested to use vegetable greens of tuberous plants, namely that of taro, carrot, sugar beet, sweet potato and potato for h hyperglycemic patients.
- 2. Vegetable greens of tuberous plants, especially that of potato, sweet potato and taro may be used for remedy of liver disorders.
- 3. Taro followed by sugar beet leaves and stems may be suggested for amelioration of renal

dysfunction.

- 4. Vegetable greens of tuberous plants, in particular that of carrot and potatoes may be suggested for lowering LDL and atherogenig index levels.
- 5. Studies may be suggested to evaluate the efficacy and advantage of using vegetable greens of tuberous plants as extracts versus dried powder.

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

REFERENCES

- 1. *Abd El-Aziz, Om-Kalsom (2015):* Effect of Some Plant Substances and Herbs on Lowering Serum Cholesterol and Triglycerides. M.Sc. Thesis, Faculty of Home Economics, A1 Azhar University.
- 2. *Abidin, P.E. (2012):* Sweet Potato Breeding for Northeastern Uganda: Farmer Varieties, Farmer-Participatory Selection, and Stability of Performance. PhD Thesis, Wageningen University. ISBN 90-8504-033-7.
- 3. *Carleton, H. (1978):* Carleton Histopathological Technique, 4 the Ed. london, oxford university press. New York. Toronto.
- Chapman, D. G.; Castilla, R. and Campbell, J. A. (1959): "Evaluation of Protein in Food.
 I. A method for the determination of protein efficiency ratio". Can. J. Biochem. Phosiol., 37: 679-686.
- Desai and Biggs (1985): Hypoglycemic effect of Hantitonia suaveolens. Indian. J. Med., 81: 86-91.
- 6. *Doumas, B. T. and Biggs, H. G. (1971):* Albumin standard measurement of serum albumin with bromocresol green. Clin. Chem., 31: 78.
- 7. Drury, R. A. and Wallington, E. A. (1967): "Carton's Histological Technique". 5th Ed. Oxford univ.
- 8. *Drury, R.A. and Wallington, E.A. (1980):* Cartons Histological Technique.5 Ed. Oxford Univ.
- 9. *Fossati, P. and Precipe, L. (1980):* Triglyceride Enzymatic Colorimetric Method, J. Clin. Chem., 28(10): 2077-2080.
- 10. Fossati, P. and Precipe, L. (1982): Triglyceride Enzymatic Colorimetric Method, J. Clin. Chem., 28(10): 2077-2080.
- Friede wald, W.T; Leve, R.I and Fredrickson, D.S. (1972): Estimation of concentration of low density lipoproteins separated by three different method. Clin. chem., 18: 499-502.
- 12. Goldberg, I. J; Mosca, L; Piano, M. R; and Fisher, E. A. (2001): "Wine and Your Heart: A Science Advisory for Healthcare

Professionals from the Nutrition Committee, Council on Epidemiology and Prevention, and Council on Cardiovascular Nursing of the American Heart Association." Circulation 103: 472–475.

- 13. *Hegsted*, *D.; Mills*, *R. and Perkins*, *E. (1941):* Salt mixture. J. Biol. Chem., 138: 459.
- 14. *Henry, R.J. (1974):* Creatinine Colorimetric Method. Principles of Techniques, 2 Ed., Harcer and Row Pub, P.525.
- Kikuchi-Hayakawa., (1998): effect of Soya milk on lipid metabolism in aged ovariectomized rats. Bioscience, Biotechnology and Biochemistry, 62(9): 1988.
- Lee J, Chae K, Ha J, Jeong S, Kim MY, Yoon M.(2017): Regulation of obesity and lipid disorders by herbal extracts from Morus alba, Melissa officinalis, and Artemisia capillaris in high-fat diet-induced obese mice. Department of Life Sciences, Mokwon University, Daejon 302-729, Republic of Korea. J Ethnopharmacol. 2008 Mar 28; 116(3): 576.
- 17. Lee, E. S.; Lee, H. E.; Shin, J. Y.; Yoon, S. and Moon, J. O. (2003): The flavonoid quercetin inhibits dimethylnitrosamineinduced liver damage in rats. J. Pharm. Pharmacol, 55(8): 1169-74.
- Malhotra, V.K. (2003): Practical Biochemistry for students, Fourth Edition, Jaypee Brothers Publishers(P) LTD, New Delhi.
- N.D.D.G, Nation Diabetes Data Group. (1994): Densification and diagnosis of diabetes mellitus and other categories of glucose intolerance. J. of Diabetes, 28: 1039-1057.
- 20. *Patton, C.J. (1977):* Urea enzymatic method. J. of Anal. Chem., 49: 464-546.
- 21. Pignone M, Alberts MJ, Colwell JA, et al. (2010): Aspirin for primary prevention of cardiovascular events in people with diabetes: a position statement of the American Diabetes Association, a scientific statement of the American Heart Association, and an expert consensus

The Therapeutic Effect of Some Tuber Plants that Found in the Al- Baha Area On Bio-Chemical Changes in Hyperglycemic Rats

document of the American College of Cardiology Foundation". Diabetes Care 33 (6): 1395–402.

- 22. *Rec. (DGKC). (1972):* Alkaline phosphatase kinetic method. J. of Clin. Chem. Clin. Biochem., 10:182.
- 23. *Reeves, P. G.; Nielson, F. H. and Fahmy, G. C. (1993):* "Reports of the American Institute of Nutrition, adhoc wiling committee on reformulation of the AIN 93". Rodent Diet. J. Nutri., 123: 1939-1951.
- 24. *Reitman, S. and Frankel (1957):* "Colorimetric method for aspartate and alanine aminotransferase". Am. J. Clin. Path., 28:26.
- 25. *Rhichmond, W. (1973):* Colorimetric determination of total cholesterol and high density lipoprotein. J.of Clin. chem., 19: 1356.
- 26. Saydah, SH. (2004): Overweight and obesity among adults with diagnosed diabetes -United States, 1988-1994 and 1999-2002. MMWR Morb. Mortal. Wkly. Rep., 53 (45):1066-8. PMID. 15549021
- 27. Snedecor G.W. and, Cochran. W.G. (1967): Statestical Methods 6th Ed. Ioea Stat University press ames Iowa USA.
- 28. *Trinder, P. (1969):* Glucose and triglycerides enzymatic colorimetric methods. J. of Ann. Clin Biochem., 6: 24-27.
- 29. *Weichselbaum, C.T.E. (1964):* An accurate rapid for the determination of protein in small amount of blood serum and plasma. Amer. J. Clin. Path., 16:40.
- 30. Wild S, Roglic G, Green A, Sicree R, King H (2004): Global prevalence of diabetes: estimates for 2000 and projections for 2030". Diabetes Care 27 (5): 1047–53.