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Solomon Khmelnik 

____________________________________________ 

 
 

I.  ​INTRODUCTION 

It is known that the fluid or gas laminar flow          

velocity spontaneous increase (without external     

forces) leads to a turbulent flow [1]. The        

mechanism of flow spontaneous change from      

laminar to turbulent is not found. Obviously, a        

source of forces perpendicular to flow velocity       

must be detected. 

Further, it is shown that the fluid moving masses         

gravitomagnetic interaction may be the cause of       

turbulence. 

In [1, 2, 3], the mechanism of the appearance of          

turbulent flows is considered and an approach to        

the method for calculating such flows is indicated.        

In [3], a new method for the numerical solution of          

the Navier-Stokes equation is proposed. At the       

beginning of the article, this method is briefly        

described and an example is given of calculating        

the flow in a mixer. Further, this method extends         

to the calculation of stationary flows with       

turbulence. An algorithm for this calculation is       

also proposed, and an example is given of        

calculating the flow in a mixer with turbulence. 

It is shown in [3] that there are forces of          

interaction between moving masses. These forces     
 

depend on the mass, velocity, and distance      
 

between masses. It was shown in [1-3] that groups        
 

of molecules forming the element of the jet       
 

interact in a similar way. In particular, when the        
 

velocity vectors of the jets are equal       
 

and the masses of the groups are equal       
 

, the force of the interaction      

between these groups is determined by the       

formula 

 

(1) 

 

where  

 is distance between groups, 

 is characteristic size of the group, 

 is density of the liquid, 

is coefficient of ​gravity permeability of       

vacuum [3]. 

, which follows from general relativity, 

is speed of light in vacuum,        

cm⋅s​−​; 

is gravitational constant,     

cm​3​⋅g​−1​⋅s​−2​
. 

 

On this basis further in [1, 2] it is shown that           

turbulent forces arise in the liquid. In this case,         

the force acting on the unit volume, 

 

(2) 

 

where the operator, which hereinafter for brevity       

sake will be called as ​turbulean, 

 

(3) 

 

turbulent density of a given fluid 

 

(4) 

 

 
It can be seen that the turbulent force has the          

dimension of the mass force acting per unit        

volume. Therefore, the turbulent forces (2) can be        
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included in the Navier-Stokes equations. The      

Navier-Stokes equations supplemented by such     

forces become equations of hydrodynamics for      

turbulent flow. 

These equations have the form: 

(5) 

 

 

 
(6) 

 

 

where ​p​ is the pressure. In the stationary regime, 

equation (6) takes the formгде ​р​ - давление.  

 

(7) 

 

It was shown in [2] that instead of equation (7) a           

modified equation can be considered, which has       

the following form: 

 

(8) 

 

where the quasipressure 

 

(9) 

 

In this case 

 

(10) 

 

Here  

 

 (11) 

 
In [2] it is shown that in the flow of a viscous            

incompressible fluid there is a power balance: 

 

(12) 

 

where the power of mass forces 

(13) 

 

power of mass forces 

 

 

power of the change in the energy loss by internal          

friction during motion 

 

(15) 

 

power of changing the energy flow through a        

given volume of liquid 

 

(16) 

 

power of the change in energy as the direction of          

the flow changes 

 

(17) 

 

power of change of work of pressures 

 

(18) 

 

From (16, 17) we find: 

 

(19) 

 

Finally, from (11, 19) we obtain: 

 

(20) 

 

II. THE SOLUTION OF THE MODIFIED 
NAVIER-STOKES EQUATIONS 

First we consider the modified Navier-Stokes      

equations without turbulent forces: 

 

(1) 

  

(2) 

 

where are unknown . Following [2], to       

solve this system of equations, we consider the        

functional 

(3) 
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0)(div =v ,
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∂ vFvvvp

t
v

mρρρµρ ,

( ) ( ) 0=Ω−−∇⋅+∆−∇ vFvvvp mρρρµ .

( ) 0=Ω−−∇+∆− vFDv mρρµ ,
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𝑃𝑃6 + 𝑃𝑃𝑇𝑇 + 𝑃𝑃3 + 𝑃𝑃7 = 0, 

FvP ρ=6 ,

𝑃𝑃𝑇𝑇 = 𝜌𝜌𝑚𝑚𝑇𝑇𝑚𝑚𝑣𝑣, (14) 

vvP ∆⋅⋅= µ3 ,

),()(),( 457 vpPvPvpP += ,

𝑃𝑃5 = 𝜌𝜌 ∙ 𝑣𝑣 ∙ ((𝑣𝑣 ∙ ∇) ∙ 𝑣𝑣),

pvP ∇⋅=4 .

𝑃𝑃7 = 𝜌𝜌 ∙ 𝑣𝑣 ∙ �(𝑣𝑣 ∙ ∇) ∙ 𝑣𝑣� + 𝑣𝑣 ∙ ∇𝑝𝑝.

𝑃𝑃7 = 𝑣𝑣 ∙ ∇𝐷𝐷
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,,

)( ,
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where  

(4)   

 is a constant. The gradient of this functional 

has the form 

 (5) 

 

Where 

 
(6) 

 

It was shown in [2] that the functional (3) is          

convex and the minimum of the functional (3),        

achieved when the gradient (5) is zero, i.e. when 

 
(7) 

 

always exists and is unique and global.       

Consequently, the minimization of the functional      

(3) by moving along the gradient (5) is equivalent         

to solving the equation (7) with unknowns  

It was shown in [2] that  

 
(8) 

 

Thus, simultaneously with the minimization of the       

divergence , there is defined an ∇D       

that satisfies the equation (7). By increasing the        

value , it is possible to achieve arbitrarily        

high accuracy of solving equations (2).      

Consequently, the minimization of the functional      

(3) by moving along the gradient (5) is equivalent         

for at sufficiently large solution of the system         

of modified equations (1, 2) with unknowns ,        

i.e. reduces to finding the minimum of a convex         

functional  

After solving the system of equations (1, 2), the         

pressure is calculated from equation 

 

(9) 

 

which follows from (1.11). 

In this case (1.20) takes the form: 

−  P 7 = r • v • ∇[ d2

dv2 ] (9a) 

The algorithm for the motion along the gradient        

(5) of the functional (3) has the following form: 

1. We
 
consider

 
the

 
gradient

 
(5)

 

,Qg = (− ·∆v D ·F )μ + ∇ − ρ ·  

where is the three-dimensional region of flow        

existence, and all variables are three-dimensional      

vectors (in the sense of vector algebra). Here and         

below multiplication by means that the vectors        

of those points that are not in the region are           

zeroed. Further, the multiplication sign, if it refers        

to vectors, means the componentwise     

multiplication  of  vectors.   

2. Zero  values  of all velocities  in the  region are 

considered. . 

3. Coefficients are calculated: 

 
(10) 

 

 

(11)  

4. New velocity values are calculated: 

(12) 

 

5. The criterion for stopping the calculation is        

checked and, if it is not fulfilled, the transition to          

step 3 is performed. The stopping criterion can be         

the achievement of a power balance (see also        

(1.12) 

(13) 

III. AN EXAMPLE OF A SOLUTION OF A 
STATIONARY PROBLEM 

Let us consider a mixer, whose lades are made of          

fine-mesh material and are located close enough       

to one another. Then the pressure forces of the         

blades on the fluid may be equated to body forces.  

Let us assume that the body forces created by         

mixer's blades and acting along a circle with its         

center in the coordinate origin, are described as        

follows 
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𝑌𝑌(𝑣𝑣) = 1
2
𝜇𝜇 ∙ 𝑣𝑣 ∙ ∆𝑣𝑣 + 𝑟𝑟

2
�div(𝑣𝑣)�2 + 𝜌𝜌 ∙ 𝐹𝐹 ∙ 𝑣𝑣

𝑔𝑔 = −𝜇𝜇 ∙ ∆𝑣𝑣 + ∇𝐷𝐷 − 𝜌𝜌 ∙ 𝐹𝐹,

∇𝐷𝐷 = −𝑟𝑟 ∙ ∇[𝑑𝑑2 𝑑𝑑𝑣𝑣2⁄ ]

−𝜇𝜇 ∙ ∆𝑣𝑣 + ∇𝐷𝐷 − 𝜌𝜌 ∙ 𝐹𝐹 = 0,

0)(div →v при ∞→r . 

2
2

WDp ρ
−= ,

∫∫∫ ⋅⋅=
Q

dxdydzgga ,

𝑏𝑏=∭ �𝜇𝜇∙𝑔𝑔∙∆𝑏𝑏+ 𝑟𝑟∙𝑔𝑔∙�
𝑑𝑑2𝑔𝑔 𝑑𝑑𝑥𝑥2⁄
𝑑𝑑2𝑔𝑔 𝑑𝑑𝑦𝑦2⁄
𝑑𝑑2𝑔𝑔 𝑑𝑑𝑧𝑧2⁄

��𝑑𝑑𝑥𝑥𝑑𝑑𝑦𝑦𝑑𝑑𝑧𝑧𝑄𝑄

( ) Qbagvv ⋅⋅−⇐ / .

𝑃𝑃6 + 𝑃𝑃3 + 𝑃𝑃7 = 0.
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Let us assume that the body forces created by         

mixer's blades and acting along a circle with its         

center in the coordinate origin, are described as        

follows 

(1)
 

where 

is the distance from the current point to the         
 

rotation axis, 

 are certain constants. 

For ( ) = (0.1, 6), the function (1) is shown in          
 

Fig. 1, and gradient of forces (1) is shown on Fig
.

          
 

2. 

The projections of forces (1) on the axis of        
 

Cartesian coordinates have the form 

 

(2)
 

 

(3) 

Next, consider a mixer with a cylindrical wall        

located on a circle of radius . These walls         

create a closed system and do not change the         

power balance in the system. The region of        

integration is limited to a circle with a radius . 

It is important to note that on the circle of radius           

the speed is . This answers the known         

fact that due to vicious friction the speed of fluid          

on the surface of a body surrounding it, is equal to           

zero. It is also important to note that to get this           

result we had not have to add more equations in          

the main equation - it was enough to restrict the          

integration domain. 

The conditions of the computational problem are       

indicated in detail in [2]. In Fig. 3 shows some          

graphs: 

 

 

( ) ( )2aReRF −−= σ ,

( ) ( )2, aR
x e

R
yyxF −−= σ ,

( ) ( )2, aR
y e

R
xyxF −−−= σ .
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1. Relative error in calculating speed - see the        

first window on the first vertical; 

2. Relative error in calculating divergence of      

speed - see the second window on the first         

vertical; 

3. Speed function as a function of the radius         

- see the first window on the second vertical; 

4. Speed function , depending on the height       

distance to the center of the mixer with a         

constant radius value - see the third window        

on the first vertical; rectangle in this window        

indicates area of act force; 

5. Function of force and the Lagrangian       

function as a functions of the radius -         

see the fourth window, where the function
       

has a larger value of the maximum  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

 
Fig. 3. 

 

Fig. 4. 
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Fig. 5. 

We denote by the velocity along the horizontal   vs       

circle. In Fig. 4 shows the diagram of this velocity          

on a vertical plane passing through the axis ​oy​. In          

Fig. 5 shows the diagram of this velocity in the          

horizontal plane passing through the middle of       

the mixer.  

 

IV. SOLUTION OF MODIFIED 
NAVIER-STOKES EQUATIONS WITH 

TURBULENCE 

In this case, it is necessary to solve the system of          
 

equations (1.5, 1.7). However, this functional (as      
 

for the equations (2.1, 2.2)) is not convex and,        
 

consequently, its minimization can not be     
 

performed by moving along the gradient
.

     
 

Therefore, let us consider another method for      
 

solving the system of equations (1.5, 1.7). 

Turbulent flow with limited turbulence can be       

regarded as the sum of two processes: 

1. laminar flow with ​" trunk speeds"​, caused by         

mass forces , 

2. turbulence with ​"additional speeds" caused by       

forces . 

At the same time, the " trunk speeds​" of the flow           

are not changed by forces , but these forces         

create "​additional speeds​" that cause the flow       

elements to oscillate relative to the "main       

direction". These ​additional speeds are much      

smaller than the ​trunk speeds​. Under this       

assumption, the algorithm for solving the system       

of equations (1.5, 1.7) can be as follows: 

1. We accept . In this case, the system        

of equations (1.5, 1.7) takes the form (2.1, 2.2). 

2. We solve the system of equations (2.1, 2.2) by         

the algorithm described in Section 2, and       

determine the backbone speeds and the       

corresponding quasi-pressures .D∇ m  

3. We calculate the powers , , . These    P 6  P 3  P 7   

powers are determined by (1.13, 1.15, 1.16),       

respectively. In this case, the power balance       

condition + + =0 must be satisfied. P 6 P 3 P 7   

4. At known speeds we find the forces
        

 according to (1.2). 

5. Solve a system of equations of the form 

 
 

(10) 

 

(11) 
 

This system of equations formally coincides with       

the system of equations (2.1, 2.2) and is also         

solved by the algorithm described in Section 2. In         

this case, the speeds caused by forces        

0)(div =v ,

0=Ω−∇+∆⋅− mmDv ρµ .

and the corresponding    

quasi-pressures  are determined.D∇ t  

Method and Algorithm for Calculation of Turbulent Flows
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1. We calculate the powers , ,    P 6  P 3  P 7  

according to (1.13, 1.15, 1.16). In this case, the         

condition + + =0 must be satisfied. P 6 P 3 P 7     

Here is simultaneously the power of the P 6        

turbulent forces. 

2. Total capacities , , . are found as  P 60  P 30  P 70     

the sum of the capacities found in points 3 and          

6. 

3. Determine the total speeds and      

total quasi-pressures .∇D D D   = ∇ m + ∇ t  

4. By (1.10), we determine the pressure . 

V.    AN EXAMPLE OF THE SOLUTION OF 
THE PROBLEM WITH TURBULENCE  

Again, consider the flow in the mixer - as in         
 

Section 3.  

Various graphs are given below, with the left       
 

figures referring to the calculation by clause 3,       
 

and the right drawings refer to the calculation by        
 

clause 6 for .ρm = 1  

In Fig. 6 shows the errors of the execution of         
 

equations (2.2) and 2.1) depending on the number       
 

of iterations - see Error1 and Error2, respectively. 

In Fig. 7 shows the speed as functions of the           

radius. 

In Fig. 8 shows the speed as a function of the            

height distance to the center of the mixer for a          

constant value of radius; a rectangle in this        

window indicates the range of force. 

In Fig. 9 shows the force and Lagrangian        

as a function of the radius, where value of          

maximum for force have a larger value of        

maximum for Lagrangian . 

We denote by the velocity along the horizontal   vs       

circle.  

In Fig. 10 shows the diagrams of this velocity         vs  

on the vertical plane passing through the axis ​oy​. 
 

In Fig. 11 shows the velocity diagrams in the       vs    

horizontal plane of the plane passing through the        

middle of the mixer. 

 

Fig. 6. 

 

Fig. 7. 
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Fig. 8. 

 

Fig. 9. 

 

Fig. 10. 

 
Fig. 11. 

 

 

 

 

 

 

Method and Algorithm for Calculation of Turbulent Flows



 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

 

9 © 2018 London Journals Press Volume 18 | Issue 3 | Compilation 1.0

 

The initial data and the results of the calculation         

are summarized in Table. 1. 

Column 3 of this table shows the results of solving          

the system of equations (5.2) in accordance with        

p. 2 of the algorithm under consideration. 

Columns 4 and 5 of this table show the results of           

solving the system of equations (10, 11) with p. 5          

of the algorithm under consideration. 

 

 

Table 1. 

Notation Dimension Parameters 
Without 

turbulence 

With 

turbulence 

With 

turbulence 

1  2 3 4 5 

ρm  
g
cm3  Turbulent density 0 10 1 

ρ  
g
cm3  Density of a liquid 1.7 1.7 1.7 

μ  /secsm2  Coefficient of internal   

friction 

0.7 0.7 0.7 

k  Number of iterations 1500 500 500 

r  Parameter 100 100 100 

ε   Relative error in the    

fulfillment of the equations    

of hydrodynamics 

0.01·10−3
 0.29·10−3

 0.29·10−3
 

P 3  ⁄sec sm  g 3
 Thermal power -1.6 ·106

 -1.8 ·106
 -0.018 ·106

 

P 6  ⁄sec sm  g 3
 Power of mass forces 5 ·106

 3.8 ·106
 0.038 ·106

 

P 7  ⁄sec sm  g 3
 Power change in energy    

flow 

-1.6 ·106
 -2 ·106

 -0.02 ·106
 

+ +P 6 P 3 P 7  ⁄sec sm  g 3
 Power imbalance .4·106 4

 .3·107 4
 .073·100 4

 

εP   Relative power imbalance 0.0128 0.0191 0.0191 

P   60  ⁄sec sm  g 3
 Total power of the mass     

forces 

5 ·106
 8.8 ·106

 5.038 ·106
 

ϑ = P 6

P 60   Coefficient of efficiency 1 1.76 1.0076 

mid( ​v ​)  sm
secк  Mean square speed 9.49 4.54 0.45 

idm (∇D)  ⁄sec sm  g 3 2
 Mean square quasi-   

pressure gradient 

0.0389 0.0453 0.0143 

div 
1
sec  Mean square divergence at    

a point 

0.452 0.613 0.0614 

mid( ​F ​) 
sm
sec2  Mean square mass force 0.947 1.865 0.186 

 

It can be noted that 

1. The additional speeds ​V shown in the "​root        

mean square speed" line and columns 4-5 are        

significantly smaller than the trunk speeds ​Vо       

shown in the same row and column 3. Here,         

too, we see that ​V << Vo ​. Hence our         

assumption is fulfilled.  

2. For a certain number of iterations, the power        

balance equation + + =0 is fulfilled -  P 6 P 3 P 7     

see the line «Relative power imbalance»,      

where .εP = P 6

(P +P +P )6 3 7   

3. At the same time, the error in the execution of          

the system of equations (5.2) and the system        

of equations (10, 11) also becomes      

insignificant - see the line "Relative error ...".        

This value is calculated by the formula       

.ε =
( (v ))∑

 

 
2

( (g ))∑
 

 

2

 

4. At the same time, the error in executing the         

equation also becomes insignificant - iv  d = 0      

see the line "Mean square divergence".  

5. It can be seen in Table 1 and Fig. 1-7, that           

when additional turbulent forces are taken      

into account, additional powers and    P 3   P 7  

appear, i.e. the energy of turbulent forces is        

converted into energy of heating and work of        

 Method and Algorithm for Calculation of Turbulent Flows
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pressures - turbulence raises temperature and      

pressure. 

6. Exceeding the power of mass forces due to        

additional turbulent forces we will estimate      

the efficiency coefficient . ϑ = P 6

P 60  

VI. CONCLUSIONS 

Turbulence is caused by the gravitational field of        

the Earth. The forces of turbulence and the kinetic         

energy of turbulent motion can be calculated from        

the equations of hydrodynamics supplemented by      

turbulean. 

The influence of gravitomagnetic forces increases      

with the speed of motion. Therefore, at low speeds         

a laminar flow is observed, but turbulent forces        

play an important role with increasing speed. An        

anonymous author in [4] formulates a very       

profound observation: 

Traditional hydrodynamics tacitly based on     

axiom that the true mode of fluids and gases         

motion is a laminar current, and turbulence is        

regarded as its violation caused by a particular        

restriction of its "freedom". However, based on       

the fact that the current that was laminar in a          

relatively narrow channel, when removing the      

walls that limit it and remaining the previous        

velocity begins to swirl, it is logical to conclude         

that exactly vortex flow is a "natural" mode of         

fluids and gases motion, and it becomes forcedly        

laminar - just under the influence of       

environmental constraints! It is enough to look at        

Reynolds number formula - generally accepted      

criterion of flow laminarity or turbulence - in        

case of constant flow rate it increases       

proportionally to pipe diameter, which means      

that the current becomes more turbulent. A fluid        

whirling at a high velocity in a narrow tube is          

laminar, and even slow currents in the limitless        

ocean are accompanied by rotary streams and       

vortices - the same slow, low-observable and safe        

as flows that have generated them. 

There are devices in which this additional energy        

generated by turbulent forces is used - so-called        

cavitation heat generators. The first such device       

was "Apparatus for Heating Fluids" by J. Griggs        

[5]. In it "​the rotor rides a shaft which is driven           

by external power means. Fluid injected into the        

device is subjected to relative motion between the        

rotor and the device housing, and exits the device         

at increased pressure and/or temperature​". At      

present, there are many such devices that differ in         

the ways of creating turbulent motion - see, for         

example, [6], where there are also references to        

many prototypes. Such devices provide efficient,      

simply, inexpensive and reliable sources of heated       

water and other fluids for residential and       

industrial use.  

Together with the existence of cavitation heat       

generators there is no generally accepted theory       

that reveals the source of additional energy that        

appears as a result of the functioning of these         

cavitation heat generators. In particular, Griggs in       

[5] points out that his "​device is 6        

thermodynamically highly efficient, despite the     

structural and mechanical simplicity of the rotor       

and other compounds​", but does not provide a        

theoretical justification for this statement. The      

authors of the following devices also do not        

consider the reasons for the efficiency of their        

devices.  

The application of the proposed method for       

calculating turbulent flows allows for optimal      

design of such devices. 

There are other devices demonstrating the      

existence of an inexplicable increase in energy, for        

example, Rank's tube [3, Chapter 5.6], Kotousov's       

nozzle [7]. For them, there is also no calculation         

method and the proposed method can be applied. 

Annotation 

An algorithm for calculating turbulent flows is       

described. Examples of calculation are given. It is        

noted that the proposed algorithm can be used to         

calculate and optimize cavitation heaters. 
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