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which is a combinatorial optimization and an NP-hard problem. We propose a new version of               

MMNFP; this version is a Minimum Maximal Network Fuzzy Flow Problem with Fuzzy             

Time-Windows (MMNFFPFTW). After a mathematical modeling problem, we introduce some          

basic definitions, basic formulations of the problem, and one of them is the minimization of the                

concave function over a fuzzy convex set. The problem can also study with the difference of the                 

convex (nonconvex) functions programming. We propose a new algorithm of the MMNFFPFTW.  
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I. INTRODUCTION 

A Minimum Maximal Network Flow Problem (MMNFP) is a basic problem in the network flow theory                

with several applications, communication networks and logistic networks. In the last 20 years there are               

many active researchers in difference of a convex (nonconvex) functions programming, because most of              

real-life optimization problems are nonconvex see, ([8], [9] and [10]). The field of network              

optimization flows has a rich and long history, a difference of convex functions programming and the                

difference of the convex function algorithms introduced by Pham Donh Tao in 1985. The real-life early                

work established the foundation of the key ideas of the network optimization flow theory, see, ([1], [2],                 

[3], [4] and [5]). The key task of this filed is to answer such questions as, which way to use the network                      

of the most cost effective?  

Iri [13] gave the definition of undirected flow (u-flow) and presented the fundamental problems related               

u-flow. Although the concept of u-flow is quite the different from maximal flow and their relationship is                 

not known yet so much, the optimal value of the minimum maximal u-flow of the network flow ​𝐺 is                   

equal to the best value of the minimum maximal flow under to sumption. In [13] profound essay, a                  

several fundamental theorems and the maximal research topics are described, but no algorithms for the               

corresponding problems are proposed. To the author's knowledge, no algorithms for a minimum             

maximal flow were known until Shi-Yamamoto [20]. As pointed out in [24], Shi-Yamamoto's algorithm              

is not efficient enough. After that, some algorithms for solving the problem were proposed in such as                 

Shigeno-Yamamoto [21] and others.  
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Figure 1                                                                     Figure 2 

A Minimum Maximal Network Fuzzy Flow Problem with Fuzzy Time-Windows 
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A maximum flow problem and a minimum cost flow problem are two typical 

problems of them, see, ([11], [12], [14] and [15]). However, from the point view of the 

practical cases, we have another kind of the problems which the different form of the

typical ones is inherently. For instance, a Minimum Maximal Network Fuzzy Flow 

Problem with Fuzzy Time-Windows (MMNFFPFTW), by Figure 1 and 2 portrays a

fuzzy network of the arc fuzzy flow capacity of one unit on all arcs, each arc has a 

transit fuzzy time 𝑡̃𝑣𝑖𝑣𝑗
,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉; (𝑣𝑖, 𝑣𝑗) ∈ 𝑉, 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1, … , 𝑛, see, [6]. Each 

vertex 𝑣𝑖 ∈ 𝑉 has a fuzzy time-windows [𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

], within which the vertex may be 

 

 

served, i.e., 𝑡̃𝑣𝑖
∈ [𝑎̃𝑣𝑖

, 𝑏̃𝑣𝑖
], 𝑡̃𝑣𝑖𝑣𝑗

∈ 𝑇̃, is a non-negative fuzzy service and leaving for 

The figure 1 illustrates the maximum fuzzy flow of the fuzzy network, that is, 

the fuzzy flow on all arcs is one except the arc 𝑥̃3, whose fuzzy flow is zero. On the 

other hand, if the fuzzy flow on 𝑥̃3 is fixed at one and we cannot reduce it by some 

reasons such as emergency, then the fuzzy network cannot be exploited at the most 

economical situation. In this case, we can send two unit of the fuzzy flow from a source 

vertex 𝑠 to a sink vertex 𝜏 which satisfy the fuzzy time-windows constraint. In the figure 

2, the fuzzy flow on 𝑥̃3 is fixed at one, the possible fuzzy flow value, we can send 

between 𝑠 and 𝜏 is one unit. The fuzzy flow value, we can send between 𝑠 and 𝜏 reduces 

from two (in figure 1) to one (in figure 2) because the fuzzy flow value of 𝑥̃3 is 

undirected. It means that the maximum fuzzy flow value is not attainable if the users 

on the fuzzy network are disobedient. 

Form the point view of modeling, the above of two figures cases are essentially 

different though they bear some resemblance. If the fuzzy flow is directly, the figure 1 

aims at an optimal value of the fuzzy flow. The figure 2 also, searches for an optimal 

value of the fuzzy flow, without a directly of the network fuzzy flow. The standard 

that vertex. A source vertex 𝑠 and a sink vertex 𝜏 with fuzzy time -windows [𝑎̃𝑠, 𝑏̃𝑠]

and [𝑎̃𝜏 , 𝑏 ̃
𝜏] respectively, see, ([6], [7], [12] and [22]).

 



II. FUZZY CONCEPTS AND MATHEMATICAL MODELS 

Consider a directed fuzzy network 𝐺̃ = (𝑉, 𝐴, 𝑡̃𝑣𝑖𝑣𝑗
, [𝑎̃𝑣𝑖

, 𝑏̃𝑣𝑖
]), where 𝑉 is a set of 𝑛

vertices, 𝐴 is a set of 𝑛 arcs with a non-negative transit fuzzy time 𝑡̃𝑣𝑖𝑣𝑗
,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉,

(𝑣𝑖 , 𝑣𝑗) ∈ 𝑉, 𝑖 ≠ 𝑗; 𝑖, 𝑗 = 1. … . 𝑛. For each vertex 𝑣𝑖 ∈ 𝑉, has a fuzzy time-windows 

[𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

] within which the vertex may be served with 𝑡̃𝑣𝑖
∈ [𝑎̃𝑣𝑖

, 𝑏̃𝑣𝑖
] is a non-negative 

service and leaving fuzzy time of the vertex. A source vertex 𝑠, a sink vertex 𝜏 with a 

fuzzy time-windows [𝑎̃𝑠, 𝑏̃𝑠] and [𝑎̃𝜏 , 𝑏̃𝜏] respectively, see, ([5], [6] and [22]) and 𝑐̃ is a 

vector of the arc fuzzy capacity. Let 𝑋̃ denote a fuzzy set of the feasible fuzzy flow,

𝑋̃ = {𝑥̃: 𝑥̃ ∈ ℛ𝑛 , 𝐴̃𝑥̃ = 0; 0 ≤ 𝑥̃ ≤ 𝑐̃}                                                               (1)

          

                             

where the matrix 𝐴̃ stands for a vertex arc incident the relationship in the fuzzy network. 

Obviously, 𝑋̃ is a compact convex fuzzy set.

Let 𝑓 be a fuzzy flow value function,  𝑓 is assumed to be a fuzzy linear on 𝑋̃. For instant, 

it usually fined by,

𝑓(𝑥̃) = ∑ 𝑥̃𝑣𝑖
− ∑ 𝑥̃𝑣𝑖𝑣𝑖∈𝛿−(𝑠)𝑣𝑖∈𝛿+(𝑠)                                                                  (2)

                        

where 𝛿+(𝑠) and 𝛿−(𝑠) are the sets of arcs which leaves and enters the source vertex 

𝑠, respectively.

𝑟̃(𝑥̃) = 𝑚𝑎𝑥̃{𝑒̃(𝑦̃ − 𝑥̃): 𝑦̃ ≥ 𝑥̃, 𝑦̃ ∈ 𝑋̃}                                                             (3)

where, 𝑟̃(𝑥̃) ≥ 0, ∀𝑥̃ ∈ 𝑋̃, 𝑒̃ denoted to both a row fuzzy vector and a column fuzzy 

vector of ones. Moreover, 𝑟̃(𝑥̃) is the piecewise fuzzy linear on 𝑋̃. In fact, adding a 

slack fuzzy vector 𝑧̃ such that,

▪ A Mathematical Formulation Model  

• We define an instant model with the fuzzy function ​𝑟̃  as;  
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become more difficulty. Compared to the standard network fuzzy flow theory is a new 

filed, hence a still in its infancy, see, ([16], [17], [18], [19] and [23]).

The reminder of this work is organized as follows. In Section 2, we give the 

fuzzy concepts, mathematical models of the MMNFFPFTW and its equivalent 

formulations. In Section 3, we then outline the properties of the difference convex fuzzy

programming and a difference convex fuzzy algorithm. We describe the framework of 

the difference convex fuzzy algorithm with the fuzzy time-windows. In Section 4, we 

give a new algorithm of the MMNFFPFTW. In the last section, the conclusion is given.

network fuzzy flow with directly has been well studied for several decades. Without a 

directly, many problems in network fuzzy flow, the maximum fuzzy flow problem, 



𝑚𝑎𝑥̃(𝑒̃𝑦̃ − 𝑒̃𝑥̃)  

subject to       (
 𝐴̃         0        0 
𝐸̃        𝐸̃        0

  𝐸̃        0   − 𝐸̃   

) (
𝑦
𝑧̃
̃

) = (
0
𝑐
𝑥̃
̃) , 𝑦̃ ≥ 0, 𝑧̃ ≥ 0                                      (5)

where 𝐸̃ is an 𝑛 × 𝑛 fuzzy matrix. As 𝑟̃(𝑥̃) is a solution of the linear fuzzy

maximization, we assume that,

𝑟̃(𝑥̃) = 𝑐̃𝐵̃𝐵̃−1 (
0
𝑐
𝑥̃
̃)-𝑒̃𝑥̃                                                                             (6)

where 𝑐̃𝐵̃ corresponding to the coefficient fuzzy vector of the objective fuzzy function, 

and 𝐵̃ is a basic fuzzy matrix of the problem (5) which satisfy a fuzzy time-windows 

constraints

𝑡̃𝑣𝑖
+ 𝑡̃𝑣𝑖,𝑣𝑗

≤ 𝑡̃𝑣𝑗
, 𝑡̃𝑣𝑖

∈ [𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

], 𝑡̃𝑣𝑗
∈ [𝑎̃𝑣𝑗

, 𝑏̃𝑣𝑗
], 𝑡̃𝑣𝑖

, 𝑡̃𝑣𝑖,𝑣𝑗
∈ ℛ+,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉        (7)

• We define a dual formulation model

In Philip [11], it follows that there exists a simplex Λ̃ ⊆ ℛ𝑛 (the set of 𝑛 −

dimensional real fuzzy row vectors) such that the vector 𝑥̃ is a maximal fuzzy flow if 

and only if there exists 𝜆̃ ∈ Λ ̃ such that

 𝜆̃𝑥̃ ≥ 𝜆̃𝑦̃, ∀𝑦̃ ∈ 𝑋̃                                                                                               (8)

Thus, the MMNFFPFTW can be formulated as:

 𝑚𝑖𝑛̃𝑓(𝑥̃)

subject to            −𝜆̃(𝑦̃ − 𝑥̃) ≥ 0, ∀𝑦̃ ∈ 𝑋̃, 𝜆̃ ∈ Λ̃, 𝑥̃ ∈ 𝑋̃                                                          (9)

          𝑡̃𝑣𝑖
+ 𝑡̃𝑣𝑖,𝑣𝑗

≤ 𝑡̃𝑣𝑗
, 𝑡̃𝑣𝑖

∈ [𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

], 𝑡̃𝑣𝑗
∈ [𝑎̃𝑣𝑗

, 𝑏̃𝑣𝑗
], 𝑡̃𝑣𝑖

, 𝑡̃𝑣𝑖,𝑣𝑗
∈ ℛ+,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉(10)      

This is a special case of the mathematical fuzzy programming of a variation inequality 

with the fuzzy time-windows constraint. We denote that,

𝑔̃(𝑥̃, 𝜆̃) = 1
2⁄ ‖𝑥̃‖2 + 1

2⁄ ‖𝜆̃‖
2

+ 𝑚𝑎𝑥̃𝑤̃∈𝑋̃{𝑤̃𝑥̃ + 𝑤̃𝜆̃ − 1
2⁄ ‖𝑤̃‖2}            (10)   

and    ℎ̃(𝑥̃, 𝜆̃) = 1
2⁄ ‖𝑥̃ + 𝜆̃‖

2
+ 1

2⁄ ‖𝑥̃‖2                                                             (11)   
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(
   𝐴̃        0      0 
   𝐼        𝐼        0 
   𝐼        0   − 𝐼   

) (
𝑦
𝑧̃
̃

) = (
0
𝑐
𝑥̃
̃) , 𝑧̃ ∈ ℛ∗

2𝑛 ⟺ 𝐴̃𝑦̃ = 0, 𝑥̃ ≤ 𝑦̃ ≤ 𝑐̃                      (4)

where, ℛ∗

2
𝑛 denotes the fuzzy set of 2𝑛 − dimensional real column fuzzy vectors and 

𝐴̃ is a fuzzy matrix stands for the vertex arc incident a relationship in the fuzzy network. 

Then for a given 𝑥̃ ∈ ℛ∗
𝑛 , 𝑟̃(𝑥̃) is a solution of the following fuzzy linear programming:



Since 𝑋̃ is a convex fuzzy set. Suppose that (8) holds for some 𝑥 ∈ 𝑋 and some 𝜆̃ ∈ Λ ̃,

we have that;

0 ≤ 𝑚𝑎𝑥̃𝑤̃∈𝑋̃{𝜆̃𝑤̃ − 𝜆̃𝑥̃ − 1
2⁄ ‖𝑤̃ − 𝑥̃‖2} ≤ 𝑚𝑎𝑥̃𝑤̃∈𝑋̃{𝜆̃𝑤̃ − 𝜆̃𝑥̃: 𝑤̃ ∈ 𝑋̃} = 0           (14)        

which yields 𝑔̃(𝑥̃, 𝜆̃) - ℎ̃(𝑥̃, 𝜆̃) = 0. Suppose that 𝑔̃(𝑥̃, 𝜆̃)- ℎ̃(𝑥̃, 𝜆̃) = 0 for some 𝜆̃ ∈ Λ ̃,

𝑥̃ ∈ 𝑋̃. Then we have that, 

𝑚𝑎𝑥̃𝑤̃∈𝑋̃{𝜆̃(𝑤̃ − 𝑥̃) − 1
2⁄ ‖𝑤̃ − 𝑥̃‖2} = 0                                                       (15)

which implies that 𝜆̃(𝑤̃ − 𝑥̃) ≤ 0 for all 𝑤̃ ∈ 𝑋̃. In fact, if we have some 𝑤̃𝑜 ∈ 𝑋̃ such 

that 𝜆̃(𝑤̃𝑜 − 𝑥̃) > 0, then we can take a point 𝑤̅ on line segment [𝑤̃𝑜, 𝑥̃] satisfying

‖𝑤̅ − 𝑥̃‖ < ‖𝜆̃‖𝑐𝑜𝑠𝜃,  where 𝜃 is the acute angel between 𝜆̃ and 𝑤̃𝑜 − 𝑥̃. Since 𝑋̃ is a 

fuzzy convex, then 𝑤̃ ∈ 𝑋̃ but 𝜆̃(𝑤̃ − 𝑥̃) − 1
2⁄ ‖𝑤̃ − 𝑥̃‖2 > 0. It contradicts (15).

• Note that: The fuzzy functions 𝑔̃ and ℎ̃ are fuzzy convex and differentiable. 

From lemma 2.1, it follows that the problem can be formulated by the following of the

difference convex fuzzy functions of differentiable programming with a fuzzy time-

windows constraint:

𝑚𝑖𝑛̃𝑓(𝑥̃)

subject to          
𝑔̃(𝑥̃, 𝜆̃)- ℎ̃(𝑥̃, 𝜆̃) = 0 , ∀𝜆̃ ∈ Λ̃, 𝑥̃ ∈ 𝑋̃

                                                             (16)

          
𝑡̃𝑣𝑖

+ 𝑡̃𝑣𝑖,𝑣𝑗
≤ 𝑡̃𝑣𝑗

, 𝑡̃𝑣𝑖
∈ [𝑎̃𝑣𝑖

, 𝑏̃𝑣𝑖
], 𝑡̃𝑣𝑗

∈
[
𝑎̃𝑣𝑗

, 𝑏̃𝑣𝑗

]
, 𝑡̃𝑣𝑖

, 𝑡̃𝑣𝑖,𝑣𝑗
∈ ℛ+,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉             

By Shigeno-Takahashi-Yamamoto [11], we see that the Λ̃ in (16) could be replaced by 

{𝜆̃: 𝜆̃ ∈ ℛ𝑛
∗∗, 𝜆̃ ≥, 𝜆̃𝑒̃ = 𝑛2} where, ℛ𝑛

∗∗ ={𝑥̃: 𝑥̃ ∈ ℛ𝑛; 𝑥̃ > 0}, ℛ𝑛 denotes the fuzzy set 

of n-dimensional real row vector and 𝑒̃ denoted to both the fuzzy row vector and the

column fuzzy vector of ones. Then, we take the above set as Λ̃ to design the algorithms. 

III. A CONVEX FUZZY PROGRAMMING AND A CONVEX FUZZY 

ALGORITHM 

A difference convex programming and a difference convex algorithm introduced by 

Pham Dinh Tao in 1985 and extensively developed in other works. A difference convex 
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Then, we proof the following lemma

Lemma 2.1 The constraints (9) can be cast into the form:

𝑔̃(𝑥̃, 𝜆̃) - ℎ̃(𝑥̃, 𝜆̃) = 0, 𝜆̃ ∈ Λ ̃, 𝑥̃ ∈ 𝑋̃                                                                (12)     

Proof: We note that, 

𝑔̃(𝑥̃, 𝜆̃) - ℎ̃(𝑥̃, 𝜆̃) = 𝑚𝑎𝑥̃𝑤̃∈𝑋̃{𝜆̃(𝑤̃ − 𝑥̃) − 1
2⁄ ‖𝑤̃ − 𝑥̃‖2}                              (13)        

          

 



In [17] a difference convex algorithm is a primal-dual approach for finding a

local optimum in the difference convex programming. More detailed the results see, 

[18] a difference convex algorithm can be found. Some numerical experiments are 

reported that it finds a global minimizer often if one chose a good start point.

Consider the following general problem:

𝑤̃𝑝 = 𝑖𝑛𝑓{𝑔̃(𝑥̃)- ℎ̃(𝑥̃): 𝑥̃ ∈ ℛ𝑛}                                                                       (14)                  

such that 𝑔̃(. ),ℎ̃(. ): ℛ𝑛 ⟶ ℛ ∪ ℛ are a low semi-continuous of the convex fuzzy

functions on ℛ𝑛 . It is easy to see that the problem;

𝑚𝑖𝑛̃{𝑓(𝑥̃)+𝛿𝑋̃(𝑥̃)- ℎ̃(𝑥̃)}=𝑚𝑖𝑛̃{𝑔̃(𝑥̃)- ℎ̃(𝑥̃)}                                                    (15) 

where, 𝛿𝑋̃ the indicator of 𝑋
̃
 and 𝑔̃(𝑥̃) = 𝑓

̃
(𝑥̃) + 𝛿

̃
𝑋̃(𝑥̃) is a special case of (14) as 

shown in (15) under the conservation of ∞. We also suppose that 𝑔̃(𝑥̃)- ℎ̃(𝑥̃) is bounded 

below on ℛ𝑛 . The ℇ-subgradient of 𝑔̃ at the point 𝑥̃0 are defined by:

𝜕ℇ𝑔̃(𝑥̃0) = {𝑦̃ ∈ ℛ𝑛: 𝑔̃(𝑥̃) ≥ 𝑔̃(𝑥̃0) + ⟨𝑥̃ − 𝑥̃0, 𝑦̃⟩ − ℇ; ∀𝑥̃ ∈ 𝑋̃}            (16)           

and 𝜕𝑔̃(𝑥̃0) = 𝜕0𝑔̃(𝑥̃0). The conjugate fuzzy function of 𝑔̃ is given by:

𝑔̃∗(𝑦̃) = 𝑠𝑢𝑝{⟨𝑥̃ − 𝑦̃⟩ − 𝑔̃(𝑥̃): 𝑥̃ ∈ ℛ𝑛}                                                          (17)            

From the low semi-continuous of 𝑔̃ and ℎ̃, we see that 𝑔̃ = 𝑔̃∗∗ and ℎ̃ = ℎ̃∗∗

hold. Consider the dual fuzzy problem of (14):

𝑤̃𝑑 = 𝑖𝑛𝑓{ℎ̃∗(𝑦̃)- 𝑔̃∗(𝑦̃): 𝑦̃ ∈ ℛ𝑛}                                                                  

We have that;

        𝑤̃𝑝 = 𝑖𝑛𝑓{𝑔̃(𝑥̃)- ℎ̃(𝑥̃): 𝑥̃ ∈ ℛ𝑛}

= 𝑖𝑛𝑓{𝑔̃(𝑥̃) - 𝑠𝑢𝑝{⟨𝑥̃, 𝑦̃⟩ − ℎ̃∗(𝑦̃)}: 𝑦̃ ∈ ℛ𝑛: 𝑥̃ ∈ ℛ𝑛}

= 𝑖𝑛𝑓{𝑔̃(𝑥̃) + 𝑖𝑛𝑓{ℎ̃∗(𝑦̃) − ⟨𝑥̃, 𝑦̃⟩}: 𝑦̃ ∈ ℛ𝑛: 𝑥̃ ∈ ℛ𝑛}

= 𝑖𝑛𝑓{ℎ̃∗(𝑦̃) + 𝑖𝑛𝑓{ℎ̃∗(𝑦̃) − ⟨𝑥̃, 𝑦̃⟩}: 𝑦̃ ∈ ℛ𝑛}                                                 (19)

= 𝑖𝑛𝑓{ℎ̃∗(𝑦̃) + 𝑠𝑢𝑝{⟨𝑥̃, 𝑦̃⟩ − 𝑔̃(𝑥̃)}: 𝑥̃ ∈ 𝑋̃}:𝑦̃ ∈ ℛ𝑛}

= 𝑖𝑛𝑓{ℎ̃∗(𝑦̃) - 𝑔̃∗(𝑦̃): 𝑦̃ ∈ ℛ𝑛} = 𝑤̃𝑑                                        
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algorithm was successfully applied to a lot of the different and various nonconvex

optimization problems to which it quite often gave a global solution and proved to be 

more robust and more efficient than related to standard methods, especially in the large-

scale setting.



 

 

 

 

 

 

 

 

3.1 A Difference Convex Fuzzy Algorithm with a Fuzzy Time-Windows  

We describe the framework of the difference fuzzy convex algorithm with a fuzzy time-windows by the                

first algorithm; 

Taking 𝑧̃ ∈ 𝜕ℎ̃(𝑥̃∗), we have ℎ̃(𝑥̃) ≥ ℎ̃(𝑥̃∗) + ⟨𝑥̃ − 𝑥̃∗, 𝑧̃⟩ for all 𝑥̃ ∈ ℛ𝑛. There for, we 

see that 𝑔̃(𝑥̃) ≥ 𝑔̃(𝑥̃∗) + ⟨𝑥̃ − 𝑥̃∗, 𝑧̃⟩ for 𝑥̃ ∈ 𝑁̃. We note that 𝑔̃ is a fuzzy convex, then

𝑔̃(𝑥̃) ≥ 𝑔̃(𝑥̃∗) + ⟨𝑥̃ − 𝑥̃∗, 𝑧̃⟩ holds for 𝑥̃ ∈ ℛ𝑛 .

We describe the framework of the difference fuzzy convex algorithm with a fuzzy time-

windows by the first algorithm;

step 0: pick up a fuzzy point 𝑥̃0 ∈ 𝑑𝑜𝑚(ℎ̃), calculate 𝑦̃0 ∈ 𝜕ℎ̃(𝑥̃0); 𝑘 = 1;

step 1: each fuzzy point has satisfied a fuzzy time-windows constraint, i.e.,

𝑡̃𝑣𝑖
+ 𝑡̃𝑣𝑖,𝑣𝑗

≤ 𝑡̃𝑣𝑗
, 𝑡̃𝑣𝑖

∈ [𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

], 𝑡̃𝑣𝑗
∈ [𝑎̃𝑣𝑗

, 𝑏̃𝑣𝑗
], 𝑡̃𝑣𝑖

, 𝑡̃𝑣𝑖,𝑣𝑗
∈ ℛ+,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉;           

step 2: calculate 𝑥̃𝑘 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛̃{𝑔̃(𝑥̃) − (ℎ̃(𝑥̃𝑘−1) + ⟨𝑥̃ − 𝑥̃𝑘−1, 𝑦̃𝑘−1⟩): 𝑥̃ ∈ ℛ𝑛};

          calculate 𝑦̃𝑘 ∈ 𝑎𝑟𝑔𝑚𝑖𝑛̃{ℎ̃(𝑦̃) − (𝑔̃∗(𝑦̃𝑘−1) + ⟨𝑥̃𝑘, 𝑦̃−𝑦̃𝑘−1⟩): 𝑦̃ ∈ ℛ𝑛};    

step 3: if 𝜕ℎ̃(𝑥̃𝑘) ∩ 𝜕𝑔̃(𝑥̃𝑘) ≠ ∅, stop; otherwise, 𝑘 = 𝑘 + 1 go to step 1.

Lemma 3.1.1 Suppose that a fuzzy points 𝑥̃𝑘 and 𝑦̃𝑘 are satisfied a fuzzy time-

windows constraint and generated in the above first algorithm, then 𝑥̃𝑘 ∈ 𝜕ℎ̃∗(𝑦̃𝑘) and 

𝑦̃𝑘−1 ∈ 𝜕𝑔̃(𝑥̃𝑘).

Proof: Assume that 𝑥̃𝑘−1 and 𝑦̃𝑘−1 are satisfied a fuzzy time-windows constraint and 

in hand. We have,

𝑚𝑖𝑛̃{𝑔̃(𝑥̃) − (ℎ̃(𝑥̃𝑘−1) + ⟨𝑥̃ − 𝑥̃𝑘−1, 𝑦̃𝑘−1⟩): 𝑥̃ ∈ ℛ𝑛}                         
                         (20)

= 𝑚𝑖𝑛̃{𝑔̃(𝑥̃) − (⟨𝑥̃ − 𝑦̃𝑘−1⟩): 𝑥̃ ∈ ℛ𝑛} − (ℎ̃(𝑥̃𝑘−1) + (⟨𝑥̃ − 𝑦̃𝑘−1⟩)}

and 𝑚𝑖𝑛̃{ℎ̃∗(𝑦̃) − (𝑔̃∗(𝑦̃𝑘−1) + ⟨𝑥̃𝑘, 𝑦̃ − 𝑦̃𝑘−1⟩): 𝑦̃ ∈ ℛ𝑛} =

= 𝑚𝑖𝑛̃{ℎ̃∗(𝑦̃) − (⟨𝑥̃𝑘 − 𝑦̃𝑘⟩): 𝑦̃ ∈ ℛ𝑛} − (𝑔̃∗(𝑦̃𝑘−1) + (⟨𝑥̃𝑘 − 𝑦̃𝑘−1⟩)}.                (21)

Thus, from step 2 in the above of the first algorithm,  

𝑔̃(𝑥̃) − ⟨𝑥̃, 𝑦̃𝑘−1⟩ ≥ {( 𝑔̃(𝑥̃𝑘)(⟨𝑥̃𝑘 − 𝑦̃𝑘−1⟩)}, ∀ 𝑥̃                                          (22)
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For a pair (𝑥̃, 𝑦̃), Fenchel's inequality 𝑔̃(𝑥̃)-𝑔̃∗(𝑦̃) ≥ ⟨𝑥̃, 𝑦̃⟩ holds for any proper 

of the convex fuzzy function 𝑔̃ and 𝑔̃∗. If 𝑦̃ ∈ 𝜕𝑔̃(𝑥̃) then 𝑔̃(𝑥̃) + 𝑔̃∗(𝑦̃) = ⟨𝑥̃, 𝑦̃⟩.

Definition 3.1 A point 𝑥̃∗ is said to be a local fuzzy minimal of 𝑔̃ − ℎ̃ if there exists a

neighborhood 𝑁̃ of 𝑥̃∗ such that (𝑔̃ − ℎ̃)(𝑥̃) ≥ (𝑔̃ − ℎ̃)( 𝑥̃∗), ∀ 𝑥̃ ∈ 𝑁̃.

Lemma 3.1 A point 𝑥̃∗ is a local fuzzy minimal for 𝑔̃ − ℎ̃, then 𝜕ℎ̃(𝑥̃∗) ⊆ 𝜕𝑔̃(𝑥̃∗).

Proof: Let (𝑔̃ − ℎ̃)(𝑥̃) ≥ (𝑔̃ − ℎ̃)( 𝑥̃∗), ∀ 𝑥̃ ∈ 𝑁̃. Then 𝑔̃(𝑥̃) − 𝑔̃(𝑥̃∗) ≥ ℎ̃(𝑥̃) − ℎ̃(𝑥̃∗).   , 



 

 

 

 

 

 
 
● Algorithm General Framework 

In this section, we give an algorithm to solve the above problem (24). A general 

framework of the branch-and-bound algorithm with a fuzzy time-windows can be stated

as follows.

step 0: initial setting and calculating;

step 1: branching of the operation with a fuzzy time-windows constraint, i.e.,

𝑡̃𝑣𝑖
+ 𝑡̃𝑣𝑖,𝑣𝑗

≤ 𝑡̃𝑣𝑗
, 𝑡̃𝑣𝑖

∈ [𝑎̃𝑣𝑖
, 𝑏̃𝑣𝑖

], 𝑡̃𝑣𝑗
∈ [𝑎̃𝑣𝑗

, 𝑏̃𝑣𝑗
], 𝑡̃𝑣𝑖

, 𝑡̃𝑣𝑖,𝑣𝑗
∈ ℛ+,∀𝑣𝑖, 𝑣𝑗 ∈ 𝑉;           

step 2: local search for a smaller fuzzy upper bound;

step 3: find a larger fuzzy lower bound;

step 4: remove some regions, do to step 1.

We describe the steps 1, 2 and 3 as the following explained:

i) Describe step 1: Branching operation with a fuzzy time-windows constraint

A simplex based to the division is usually exploited in branch-and-bound method. At 

some steps, the contemporary simplex 𝑆 is divided into two a smaller one 𝑆1 and 𝑆2.

Branch-and-bound convergence of the algorithms and a fuzzy time-windows constraint,

we need to division exhaustive, i.e., a nested sequence of the simplexes {𝑆𝑘}, 𝑘 = 1,2, …

has the following properties:

1. i𝑛𝑡(𝑆𝑖) ∩ 𝑖𝑛𝑡(𝑆𝑗) = ∅; 𝑖 ≠ 𝑗; with satisfy a fuzzy time-windows constraints and 

𝑆𝑘+1 ⊆ 𝑆𝑘; ∀𝑘,

2.    lim
𝑘→∞

∩𝑘=1
∞ 𝑆𝑘 = 𝑥̃0 for some 𝑥̃0.

At each step, we chose to divide the simplex 𝑆𝑘 into two smaller ones 𝑆2𝑘 and 

𝑆2𝑘+1 by bisecting a longest arc of 𝑆𝑘 . The sequence {𝑆𝑘}, 𝑘 = 1,2, … in such process is 

exhaustive.

ii) Describe step 2: A local search for the smaller fuzzy upper bound   

There are many methods to do a local search. Here, we exploit the first algorithm in 

this step. Even the first algorithm is not going to find a global optimum theoretically, 

but in many numerical experiments, it finds a global optimum practically.
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and   ℎ (𝑦) − ⟨𝑥𝑘 − 𝑦⟩ ≥ (ℎ (𝑦) − ⟨𝑥𝑘 − 𝑦𝑘⟩)}, ∀ 𝑦                                            (23)

It yields 𝑥̃𝑘 ∈ 𝜕ℎ̃∗(𝑦̃𝑘) and 𝑦̃𝑘−1 ∈ 𝜕𝑔̃(𝑥̃𝑘). 

 

IV. METHOD AND ALGORITHM OF THE MMNFFPFTW 

Let 𝑔̃(𝑥̃), ℎ̃(𝑥̃) are the fuzzy convex functions, we can write the problem;

𝑚𝑖𝑛̃{𝑓(𝑥̃) + 𝛿𝑋(𝑥̃) − ℎ̃(𝑥̃)} = 𝑚𝑖𝑛̃{𝑔̃(𝑥̃) − ℎ̃(𝑥̃)}                                         (24) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

iii) Describe step 3: Find a larger fuzzy lower bound

Assume that 𝑙𝑣𝑖
(𝑥̃) is the affine fuzzy function such that 𝑙𝑣𝑖

(𝑣𝑗) = ℎ̃(𝑣𝑗), ∀𝑣𝑗 ∈ 𝑉(𝑆𝑖)  

a fuzzy time-windows to be a non-negative time. From the convex fuzzy of ℎ̃(𝑥̃), we 

have 𝑙𝑣𝑖
(𝑥̃) ≥ ℎ̃(𝑥̃), ∀𝑥̃ ∈ 𝑆𝑖 , then,

𝐿̃(𝑋̃ ∩ 𝑆𝑖) = 𝑚𝑖𝑛̃{𝑓(𝑥̃) + 𝛿𝑋̃∩𝑆𝑖
(𝑥̃) − 𝑙𝑣𝑖

(𝑥̃): 𝑥̃ ∈ ℛ𝑛}

       ≤ 𝑚𝑖𝑛̃ {𝑓(𝑥̃) + 𝛿𝑋̃∩𝑆𝑖
(𝑥̃) − ℎ̃(𝑥̃): 𝑥̃ ∈ ℛ𝑛}                      

Moreover, if 𝑉(𝑆𝑖) = {𝑣1, … , 𝑣𝑝𝑖
} is a hand, satisfy a fuzzy time-windows constraint, 

then it is easy to calculate 𝐿̃(𝑋̃ ∩ 𝑆𝑖) because,

𝑚𝑖𝑛̃ {𝑓(𝑥̃) + 𝛿𝑋̃∩𝑆𝑖
(𝑥̃) − 𝑙𝑣𝑖

(𝑥̃): 𝑥̃ ∈ ℛ𝑛} = 𝑚𝑖𝑛̃ {𝑑̃ ∑ 𝜆̃𝑗
𝑝𝑖
𝑗=1 𝑣𝑗 +

𝑢̃ ∑ 𝜆̃𝑗 𝑟̃(𝑣𝑗)
𝑝𝑖
𝑗=1 : ∑ 𝜆̃𝑗 = 1, 𝜆̃𝑗 ≥ 0, 𝐴̃𝑗 ∑ 𝜆̃𝑗

𝑝𝑖
𝑗=1 𝑣𝑗 = 𝑏̃, 0 ≤ ∑ 𝜆̃𝑗

𝑝𝑖
𝑗=1 𝑣𝑗 ≤ 𝑐̃, 𝑑̃ ∈ ℛ𝑛}  (26)

            

where, 𝛿 are the sets of arcs which leaves and enters the source vertex, 𝐴̃ is a fuzzy 

matrix stands for the vertex arc incident a relationship in the fuzzy network, 𝑢̃(𝑥̃) ≥ 0

and 𝑟̃(𝑥̃) ≥ 0, ∀ 𝑥̃ ∈ 𝑋̃ is a concave function on 𝑋̃. Based on the above discussion, we 

give the following algorithm of the difference convex fuzzy algorithm of the

MMNFFPFTW.

step 0: let 𝜀̃ and 𝑆0 such that 𝑋̃ ⊆ 𝑆0. Let 𝑥̃0 = 0, 𝑥̃0 = (−1, … , −1), 𝑏̃𝑈 ≥ 0, 𝑏̃𝐿 =

𝑚𝑖𝑛̃{𝑓(𝑥̃): 𝐴̃𝑥̃ = 𝑏̃, 0 ≤ 𝑥̃ ≤ 𝑏̃}, 𝑀̃ = 𝑆0;           

step 1: select 𝑆0 ∈ 𝑀̃ such that 𝑏̃𝐿̃ = 𝐿̃(𝑋̃ ∩ 𝑆0) and dived 𝑆0 into 𝑆1 and 𝑆2;

step 2: 𝑂̃𝑖 = 𝑋̃ ∩ 𝑆𝑖 from the first algorithm for all 𝑖 = 1,2 if 𝑂̃𝑖 < 𝑏̃𝑈 then 𝑂̃𝑖 = 𝑏̃𝑈;

step 3: if 𝑏̃𝐿 < 𝐿(𝑋̃ ∩ 𝑆0) then 𝑏̃𝐿 = 𝐿̃(𝑋̃ ∩ 𝑆0), if 𝑏̃𝑈 − 𝑏̃𝑈 < 𝜀̃ then Stop;

step 4: 𝑀̃ = {𝑆 ∈ 𝑀̃: 𝐿̃(𝑋̃ ∩ 𝑆0) < 𝑏̃𝑈}, if 𝑀̃ = ∅ then Stop, otherwise, go to step 1.

The convergence of the above algorithm of the MMNFFPFTW is exhaustive of 

the partition. 

● A Difference Convex Algorithm of the MMNFFPFTW  
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As shown in problem (24) can be rewritten as a difference convex fuzzy

programming min{𝑔̃ − ℎ̃}, then we can use the first algorithm to obtain a local fuzzy 

optimal solution. Then we assume that 𝑂̃𝑖 = 𝑋̃ ∩ 𝑆𝑖 of the first algorithm which is a 

local fuzzy optimal solution satisfy the fuzzy time-windows constraint on 𝑋̃  ∩ 𝑆𝑖 by 

using the first algorithm.



 

 

 

 

 

 

 

 

 

 

V. CONCLUSION 

This paper presents a new version of the Minimum Maximal Network Flow Problem (MMNFP), a new                

version is the Minimum Maximal Network Fuzzy Flow Problem with Fuzzy Time-Windows            

(MMNFFPFTW). We consider a generalized fuzzy version of the minimum maximal network flow             

problem in fuzzy networks. We propose a mathematical model with a dual formulation of the               

MMNFFPFTW. Also, we propose a new algorithm of the MMNFFPFTW. Our algorithm is a class of a                 

branch-and-bound, the result achieved in this paper to illustrates the promising application prospects             

for the algorithm using the fuzzy networks model.  
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