The New Discoveries in Mathematics in support of Universal Mathematics having 141 digits

Abraham Mannil Thomas

IMPORTANCE OF 'THE LEFT-SIDE O'

1 to $9=9$ as 9 numbers
but o to $9=10$ as 10 numbers.
o to $9=10$, because there is an Additional 1 value arisen from the Simple fractions of 1 between 0 and the beginning of 1 , that is from o till the marking of 1 while from the marking of 1 to 9 itself there are 9 numbers. So without controversy

$$
\begin{aligned}
& 10 \text { to } 19=10 \text { numbers, where } 10 \text { to } 20=11 \text { numbers } \\
& 20 \text { to } 29=10 \text { numbers, where } 20 \text { to } 30=11 \text { numbers } \\
& \text { and soon. } \\
& \text { If o to } 9=10 \text { as } 10 \text { numbers, } \\
& \text { surely o to } 99=100 \text { as } 100 \text { numbers. This is through the left-side Additional } \\
& 1 \text { value while there is } 0 \text { at the very left side }
\end{aligned}
$$

The New Discoveries in Mathematics in support of Universal Mathematics having 141 digits

Abraham Mannil Thomas

Presently, 0 at the right side denotes tenfold value. But in the New Discovery, strictly one zero just at the left side of each digit denotes the digital value and then the still further left-side zero or zeros denote the Digital power values till Omega, the infinite Digital power value.

THE NEW DISCOVERIES IN MATHEMATICS

> I. IMPORTANCE OF 'THE LEFT-SIDE O'
> 1 to $9=9$ as 9 numbers
> but 0 to $9=10$ as 10 numbers.

0 to $9=10$, because there is an Additional 1 value arisen from the Simple fractions of 1 between 0 and the beginning of 1 , that is from 0 till the marking of 1 while from the marking of 1 to 9 itself there are 9 numbers. So without controversy,

$$
\left.\begin{array}{rl}
10 \text { to } 19= & 10 \text { numbers, where } 10 \text { to } 20=11 \text { numbers } \\
20 \text { to } 29= & 10 \text { numbers, where } 20 \text { to } 30=11 \text { numbers } \\
\text { and soon. }
\end{array}\right] \begin{array}{rl}
\text { If } 0 \text { to } 9= & 10 \text { as } 10 \text { numbers, } \\
\text { surely } 0 \text { to } 99 & 100 \text { as } 100 \text { numbers. This is through the left-side Additional } \\
& 1 \text { value while there is } 0 \text { at the very left side }
\end{array}
$$

So 99% value shows the reality of cent percent. So $\frac{33}{99}$ is $\frac{1}{3} \% ; \frac{66}{99}$ is $\frac{2}{3} \% ; \frac{99}{99}$ is $\frac{3}{3} \%$

$$
\begin{aligned}
\text { Likewise, } 0 \text { to } 999 & =1000 \\
0 \text { to } 9,999 & =10,000 \\
0 \text { to } 99,999 & =100,000 \text { (1 lakh) } \\
0 \text { to } 9,99,999 & =10,00,000 \text { (10 lakhs) } \\
0 \text { to } 99,99,999 & =100,00,000 \text { (1 crore) }
\end{aligned}
$$

The above-seen fact is very important for taking the Digital values and the measuring of its Digital power values.

II. IMPORTANCE OF ‘THE ONCE AGAIN O’ ON A CIRCLE

For our learning, 0 hour to the 9 th hour $=$

9 hours as 9 gap values between 0 to 9 , while the first 1 hour gap value is between 0 o'clock and 1 o'clock

But, when we take 1 o'clock as the
1st hour, then to 9 th hour $=8$ hours as 8 gap values between 1 to 9
Again 0 hour to the next 0 hour $=12$ hours as 12 gap values between two zeros on the clock
Because of two zero values in the same 0 for a circle, it is $\frac{0}{0}$
Here, if circle starts from the 0 point, further the circle ends in the same 0 point in 360°.
It is obviously clarified that $\frac{0}{0}$ shows the completion of the circle in 360°. While on a circle 0 is the starting point, 'the once again 0^{\prime} ' is the ending point of the circle in the same 0 itself.

Importance of 'the once again 0 ' on a circle in the setting of the universe

So it is sure that $\frac{0}{0}$ alone is not the Infinity, but $\frac{0}{0}$ is the final point of the Infinity. The Infinity has a few more values, all of which are prior to the $\frac{0}{0}$ value, whereas $\frac{0}{0}$ being the final point of the Infinity is also the starting point of the reality of the universe with the Metaphysical universe which is then the real $\frac{0}{0}$, because the universe started from when the Infinity was made vanished. So the reality of the universe was manifested from the Metaphysical universe to the Physical universe of Time and Space, and then to the Matter universe.

III. ‘THE LEFT-SIDE O’ IS POINTING TO THE DIGITAL VALUES

01 - Strictly 1 digital value in the Simple fractions of 1 is at the left side of the marking of 1 itself. That is between 0 till the beginning of 1 , which is the Simple fractions of 1 starting from 0 and ending at the marking of 1 , that shows it ends at the beginning of 1 . Here only uncountingly remain the Mixed fractions of 1 at the right side of the marking of 1 . So from the beginning of 1 till the fullness of 1 , there lie the Mixed fractions of 1 as the Other 1 value.

02 - Strictly 2 digital values proved through 10 as 0 to 9
03 - Strictly 3 digital values proved through 100 as 0 to 99
04 - Strictly 4 digital values proved through 1000 as 0 to 999
05 - Strictly 5 digital values proved through 10,000 as 0 to 9,999
06 - Strictly 6 digital values proved through 1 lakh as 0 to 99,999
07 - Strictly 7 digital values proved through 10 lakhs as 0 to 9,99,999
08 - Strictly 8 digital values proved through 1 crore as 0 to $99,99,999$
09 - Strictly 9 digital values proved through 10 crores as 0 to $9,99,99,999$
But 0,01 denotes 10 digits proved through 100 crores as 0 to $99,99,99,999$

01 is the strict 1 and 02 is strictly 10

But at present instead of 03 there is 10^{2}
At present instead of 04 there is 10^{3}
At present instead of 05 there is 10^{4}
At present instead of 06 there is 10^{5}
At present instead of 07 there is 10^{6}
At present instead of 08 there is 10^{7}
At present instead of 09 there is 10^{8}
At present instead of 0,01 there is 10^{9}

IV. DIGITAL POWER VALUE IS THE GREATER VALUE

Through the Digital power value it is easy to get very great value of multiple digits or manifold digits.

Firstly let us evaluate the present power value,
For example: 10^{9} power value presently gives the value of 10 nine times.
That shows 10 is multiplied nine times.
It again shows that apart from the Basic 10, eight more $10^{\text {s }}$ are in multiplication.

$=100,0000000$ as 100 crores.
Here is seen 1 with 9 zeros
which are 10 digits totally.
Instead of putting 9 zeros at the right side, when such a power value is transformed into the Digital power value, it is to be written as

$0,01=100$ crores.

Here instead of putting 9 zeros at the right side of 1 as $1+9$ digits or 10 digits totally, one $\mathbf{0}$ at the left side of 01 is enough to show the Digital power value, where the 01 represents the strict 1 digital value and the further added one more $\mathbf{0}$ at the left side of 01 represents the 9 more zeros at the right side as 9 more digits at the right side. The above-seen 9 zeros at the right side as the 9 digits represent the one more $\mathbf{0}$ still at the left side of 01 which is the strict 1 digital value. This strict 1 digital value is surely and strictly kept away from $1 \frac{1}{4}, 1 \frac{1}{2}, 1 \frac{3}{4}$ etc. which are the Mixed fractions of 1 representing only the Other 1 value.

If it is so,

$01=$ strict 1 value	as strict 1 digital value
$02=$ strict 10 values	as strict 2 digital values
$03=$ strict 100 values	as strict 3 digital values
$04=$ strict 1000 values	as strict 4 digital values
$05=$ strict 10,000 values	as strict 5 digital values
$06=$ strict 1 lakh values	as strict 6 digital values
$07=$ strict 10 lakh values	as strict 7 digital values
$08=$ strict 1 crore values	as strict 8 digital values
$09=$	strict 10 crore values

Here all the digital values are with only one zero at the left side.
But $0,01=$ strict 100 crore values as strict 10 Digital power values. This digital power value is because of the adding of an extra zero at the left side. So the still added zero or zeros at the left side of 01,02 , $03,04,05,06,07,08,09$ being the digital values further bring the digital power values only with the additionally put zero or zeros at the left side of them.

Here comes the Digital power value
Again, there is further Digital power value
And again, there is still further Digital power value
Again $0,04=1$ lakh crores
Again $0,05=10$ lakh crores

Again $0,06=$ crore \times crore as 1 Alpha	
Again $0,07=$	10 Alphas
Again $0,08=$	100 Alphas
Again $0,09=$	1000 Alphas
As the continuity of values $00,01=$	10,000 Alphas
	as crore \times crore $\times 10,000$,
	ie., 1 with 18 zeros as 19 digits.

Multiple Digital power values till 141 digits according to the increasing of left-side 0 , as:

$01=$ strict 1 value as 1 digital value

V. FOR EACH INCREASE OF ONE ZERO AT THE LEFT SIDE OF 01, WE GET THE FOLLOWING DIGITAL POWER VALUES

```
                    0,01 = 100 crores as 10 digits
                            00,01 = 10,000 crore }\times\mathrm{ crore or 10,000 Alphas as 19 digits
            000,01 = 10 lakh }\times\mathrm{ crore }\times\mathrm{ crore }\times\mathrm{ crore or 10,00000 Bephas as 28 digits.
            0000,01 = 10 crore Betas (as 1 with 36 zeros) as 37 digits. (4 zeros at the left side
                                of 01)
            00000,01 = 1000 Gammas (as 1 with 45 zeros) as 46 digits. (5 zeros at the left side
                                    of 01)
            000000,01 = 1 lakh crore Gammas (as 1 with 54 zeros) as 55 digits. (6 zeros at the
                                    left side of 01)
            0000000,01 = 1 crore Deltas (as 1 with 63 zeros) as 64 digits.(7 zeros at the left side
                        of 01)
            00000000,01 = 100 Epzelons (as 1 with 72 zeros) as 73 digits. (8 zeros at the left side
                                    of 01)
            0000000000,01 = 10,000 crore Epzelons (as 1 with 81 zeros) as }82\mathrm{ digits. (9 zeros at the
                        left side of 01)
            0000000000,01 = 10 lakh Heths (as 1 with 90 zeros) as 91 digits. (10 zeros at the left side
                                    of 01)
    000000000000,01 = 10 Kophs (as 1 with 99 zeros) as 100 digits. (11 zeros at the left side of 01)
    000000000000,01 = 1000 crore Kophs (as 1 with 108 zeros) as 109 digits. (12 zeros at the left
        side of 01)
00000000000000,01 = 1 lakh Vaws (as 1 with 117 zeros) as 118 digits. (13 zeros at the left side
    of 01)
00000000000000,01 = 1 crore }\times\mathrm{ crore }\times\mathrm{ Vaw = Alpha }\times\mathrm{ Vaw = 1 Zain (14 zeros at the left side
    of 01) (as 1 with }126\mathrm{ zeros) as 127 digits
```

When 15 zeros are at the left side of the following digital values, there arise different digital power values [Here only one digit increases at the right side] as:

1) 000000000000000,01
2) 000000000000000,02
3) 000000000000000,03
4) 000000000000000,04
5) 000000000000000,05
6) $000000000000000,06=1$ crore \times crore Zains $=$ Alpha \times Zain $=$ Omega
(as 1 with 140 zeros) as 141 digits
$=100$ crore Zains (as 1 with 135 zeros)
$=1000$ crore Zains (as 1 with 136 zeros)
$=10,000$ crore Zains (as 1 with 137 zeros)
= 1lakh crore Zains (as 1 with 138 zeros)
= 10 lakh crore Zains (as 1 with 139 zeros) as 140 digits.
```
Nevertheless, Omega + Omega \(=\) Omega
    Omega \(\times\) Omega \(=\) Omega and
    Omega \({ }^{\text {Omega }}=\) Omega
It is similar to \(\mathbf{0 + 0}=\mathbf{0}\)
    \(0 \times 0=0\) and
    \(0^{0}=\mathbf{0}\)
    But 0-0 is irrational.
    Nevertheless, \(-0-0=-1\)
        in the anticlockwise direction
```


But Omega - Omega = 0, because ' 0 ' is the starting point and the beginning for all.

VI. THE CORRELATION BETWEEN ALPHA AND OMEGA

If Alpha is the basic beginning value for the multicrore calculation, Omega is the ending value in the multicrore calculation.

As Alpha is the first letter (beginning letter) of Greek language, Omega is the last letter (ending letter) of Greek language. So Alpha is the beginning and Omega is the ending. If Alpha is crore \times crore as 1 with 14 zeros, Omega is Alpha ${ }^{10}$ as 1 with 140 zeros

Again, for Alpha totally there are 15 digits.
For Omega the same number of 15 zeros is used at the left side.

Again, if for the denoting of Alpha there is 06 at the extreme right side, the same 06 is at the extreme right side of Omega too.

If Alpha is written as 06 with still one more zero at the left side of 06, Omega is written as 06 with 15 more zeros at the left side of 06.

Again it is clarified that:
The digital value 06 represents at the very right side of both Alpha and Omega as the digital value after comma, while one zero still at the left side of 06 shows the Alpha as the digital power value, and 15 zeros still at the left side of 06 show the Omega as the infinite digital power value, though 06 digital value alone has the only value of 1 lakh.

When 0,01 being the starting of digital power value is 100 crores; Alpha, the basic beginning value of the multicrore calculation itself is 1 lakh fold of that 100 crores.
[The digital values such as $01,02,03,04,05,06,07,08,09$ are to be put after comma at the very right side of every digital power value, while that Digital power value is always with still putting zero/ zeros at the left side.]

This newly discovered Mathematics is applicable for all the further generations of this Millennium who will have to calculate many multicrores.

VII. TILL 141 DIGITS' EASY METHOD OF CALCULATION

[By the use of a few left-side zeros, the Digital power values make us to have an easy method of multicrore calculation with the equivalent value up to 140 right-side zeros]

1. The Digital value starts from 01.
2. The Digital power value starts from $0,01=100$ crores as 1 with 9 zeros as 10 digits.
3. The basic beginning value taken for the multicrore calculation is crore \times crore as 1 Alpha i.e., 1 with 14 zeros as 15 digits.
4. The end of everything is in Omega, that is 1 with 140 zeros as 141 digits.

VIII. THE NINE DIGITAL VALUES THROUGH PUTTING STRICTLY ONE 'o’ AT THE LEFT SIDE OF EACH DIGIT

$01=$ strictly 1 Digital value in the Simple fractions of 1 at the left side of the marking of 1
$02=$ strictly 2 Digital values proved through 10 as 0 to 9
$03=$ strictly 3 Digital values proved through 100 as 0 to 99
$04=$ strictly 4 Digital values proved through 1000 as 0 to 999
$05=$ strictly 5 Digital values proved through 10,000 as 0 to 9,999
$06=$ strictly 6 Digital values proved through 1lakh as 0 to 99,999
$07=$ strictly 7 Digital values proved through 10 lakhs as 0 to 9,99,999
$08=$ strictly 8 Digital values proved through 1 crore as 0 to $99,99,999$
$09=$ strictly 9 Digital values proved through 10 crore as 0 to $9,99,99,999$

THE DIGITAL POWER VALUES THROUGH PUTTING ADDITIONAL ZEROS AT THE LEFT SIDEOF THE ABOVE-SEEN 01, 02, 03 ETC., AND SUCH EACH o REPRESENTS 9 DIGITS AT THE RIGHT SIDE

The first row with the addition of one left-side zero

0,01 =	100 crores	that is 1 with 9 zeros at the right side as 10 digits
0,02 =	1000 crores	that is 1 with 10 zeros at the right side as 11 digits
0,03 =	10000 crores	that is 1 with 11 zeros at the right side as 12 digits
0,04	1 lakh crores	that is 1 with 12 zeros at the right side as 13 digits
0,05 =	10 lakh crores	that is 1 with 13 zeros at the right side as 14 digits
0,06 =	crore \times crore	e = 1Alpha (1 with 14 zeros) as 15 digits
0,07 =	10 Alphas	(1 with 15 zeros) as 16 digits
0,08 =	100 Alphas	(1 with 16 zeros) as 17 digits
0,09 =	1000 Alphas	(1 with 17 zeros) as 18 digits

The second row with the addition of two left-side zeros

00,01	$=\mathbf{1 0 , 0 0 0}$ Alphas $\quad(1$ with 18 zeros) as 19 digits	
00,02	$=1$ lakh Alphas $\quad(1$ with 19 zeros) as 20 digits	
00,03	$=10$ lakh Alphas(1 with 20 zeros) as 21 digits	
$\mathbf{0 0 , 0 4}$	$=\mathbf{1}$ crore Alphas $\quad=\mathbf{1}$ Bepha (1 with 21 zeros) as $\mathbf{2 2}$ digits	
00,05	$=10$ crore Alphas	$=10$ Bephas
00,06	$=100$ crore Alphas	$=100$ Bephas
00,07	$=1000$ crore Alphas	$=1000$ Bephas
00,08	$=10,000$ crore Alphas	$=10,000$ Bephas
00,09	$=1$ lakh crore Alphas	$=1$ lakh Bephas

[^0]The third row with the addition of three left-side zeros
000,01 = 10 lakh crore Alphas $=10$ lakh Bephas (1 with 27 zeros) $000,02=$ Alpha \times Alpha $=1$ Beta (1 with 28 zeros) or 1 crore Bephas as 29 digits
000,03 = 10 Betas
$000,04=100$ Betas
$000,05=1000$ Betas
000,06 = 10,000 Betas
000,07 = 1lakh Betas
000,08 = 10 lakh Betas
$000,09=1$ crore Betas

The fourth row with the addition of four left-side zeros
0000,01 = 10 crore Betas (1 with 36 zeros) as 37 digits
0000,02 = 100 crore Betas
$0000,03=1000$ crore Betas
$0000,04=10,000$ crore Betas
0000,05 = 1 lakh crore Betas
0000,06 = 10 lakh crore Betas (1 with 41 zeros)
$0000,07=1$ crore \times crore \times Beta $=$ Alpha \times Beta $=1$ Gamma (1 with 42 zeros) as 43 digits
0000,08 = 10 Gammas
0000,09 = 100 Gammas

The fifth row with the addition of five left-side zeros
$00000,01=1000$ Gammas (1 with 45 zeros) as 46 digits
00000,02 = 10,000 Gammas
00000,03 = 1lakh Gammas
00000,04 = 10 lakh Gammas
00000,05 = 1 crore Gammas
00000,06 = 10 crore Gammas
00000,07 = 100 crore Gammas
$00000,08=1000$ crore Gammas
$00000,09=10,000$ crore Gammas
The sixth row with the addition of six left-side zeros
$000000,01=1$ lakh crore Gammas (1 with 54 zeros) as 55 digits
$000000,02=10$ lakh crore Gammas (1 with 55 zeros)
$000000,03=1$ crore \times crore \times Gamma $=$ Alpha \times Gamma $=1$ Delta (1 with 56 zeros) as 57 digits
000000,04 = 10 Deltas
000000,05 = 100 Deltas
000000,06 = 1000 Deltas
000000,07 = 10,000 Deltas
000000,08 = 1lakh Deltas
000000,09 = 10 lakh Deltas

The seventh row with the addition of seven left-side zeros

$$
\begin{aligned}
0000000,01 & =\mathbf{1} \text { crore Deltas (} 1 \text { with } 63 \text { zeros) as } 64 \text { digits } \\
0000000,02 & =10 \text { crore Deltas } \\
0000000,03 & =100 \text { crore Deltas } \\
0000000,04 & =1000 \text { crore Deltas } \\
0000000,05 & =10,000 \text { crore Deltas } \\
0000000,06 & =1 \text { lakh crore Deltas } \\
0000000,07 & =10 \text { lakh crore Deltas (} 1 \text { with } 69 \text { zeros) } \\
\mathbf{0 0 0 0 0 0 0 , 0 8} & =\mathbf{1} \text { crore } \times \text { crore } \times \text { Delta }=\text { Alpha } \times \text { Delta }=\mathbf{1} \text { Epzelon } \\
& (1 \text { with } 70 \text { zeros) as } 71 \text { digits }
\end{aligned}
$$

$$
0000000,09=10 \text { Epzelons }
$$

The eighth row with the addition of eight left-side zeros

$$
\begin{aligned}
00000000,01 & =100 \text { Epzelons (} 1 \text { with } 72 \text { zeros) as } 73 \text { digits } \\
00000000,02 & =1000 \text { Epzelons } \\
00000000,03 & =10,000 \text { Epzelons } \\
00000000,04 & =1 \text { lakh Epzelons } \\
00000000,05 & =10 \text { lakh Epzelons } \\
00000000,06 & =\mathbf{1} \text { crore Epzelons (} 1 \text { with } 77 \text { zeros) } \\
00000000,07 & =10 \text { crore Epzelons } \\
00000000,08 & =100 \text { crore Epzelons } \\
00000000,09 & =1000 \text { crore Epzelons }
\end{aligned}
$$

The ninth row with the addition of nine left-side zeros
$000000000,01=10,000$ crore Epzelons (1 with 81 zeros) as 82 digits
$000000000,02=1$ lakh crore Epzelons
$000000000,03=10$ lakh crore Epzelons $(1$ with 83 zeros)
$000000000,04=1$ crore \times crore \times Epzelon $=\underset{\text { Alpha } \times \text { Epzelon }=1 \text { Heth }}{ } \mathbf{(1 \text { with } 8 4 \text { zeros) as } 8 5 \text { digits }}$

000000000,05 = 10 Heths
$000000000,06=100$ Heths
$000000000,07=1000$ Heths
000000000,08 = 10,000 Heths
000000000,09 = 1lakh Heths
The tenth row with the addition of 10 left-side zeros
$0000000000,01=\mathbf{1 0}$ lakh Heths (1 with 90 zeros) as 91 digits
$0000000000,02=1$ crore Heths (1 with 91 zeros)
0000000000,03 = 10 crore Heths
$0000000000,04=100$ crore Heths
0000000000,05 = 1000 crore Heths
$0000000000,06=10,000$ crore Heths
0000000000,07 = 1lakh crore Heths
0000000000,08 = 10 lakh crore Heths (1 with 97 zeros)
$0000000000,09=1$ crore \times crore \times Heth $=$ Alpha \times Heth $=1$ Koph (1 with 98 zeros) as 99 digits

The eleventh row with the addition of 11 left-side zeros
$00000000000,01=\mathbf{1 0}$ Kophs (1 with 99 zeros) as 100 digits
$00000000000,02=100$ Kophs

```
        00000000000,03 = 1000 Kophs
        00000000000,04 = 10,000 Kophs
        00000000000,05 = 1 lakh Kophs
        00000000000,06 = 10 lakh Kophs
        00000000000,07 = 1 crore Kophs (1 with 105 zeros)
        00000000000,08 = 10 crore Kophs
        00000000000,09 = 100 crore Kophs
```

The twelfth row with the addition of 12 left-side zeros
$000000000000,01=\mathbf{1 0 0 0}$ crore Kophs (1 with 108 zeros) as 109 digits
$000000000000,02=10,000$ crore Kophs
000000000000,03 = 1 lakh crore Kophs
$000000000000,04=10$ lakh crore Kophs
$000000000000,05=1$ crore \times crore \times Koph $=$ Alpha \times Koph $=1$ Vaw
(1 with 112 zeros) as 113 digits
$000000000000,06=10$ Vaws
$000000000000,07=100$ Vaws
$000000000000,08=1000$ Vaws
000000000000,09 = 10,000 Vaws

The thirteenth row with the addition of 13 left-side zeros
$0000000000000,01=1$ lakh Vaws (1 with 117 zeros) as 118 digits $0000000000000,02=10$ lakh Vaws
$0000000000000,03=1$ crore Vaws (1 with 119 zeros)
0000000000000,04 = 10 crore Vaws
$0000000000000,05=100$ croreVaws
$0000000000000,06=1000$ crore Vaws
$0000000000000,07=10,000$ crore Vaws
0000000000000,08 = 1 lakh croreVaws
$0000000000000,09=10$ lakh crore Vaws (1 with 125 zeros)

The fourteenth row with the addition of 14 left-side zeros

$00000000000000,01=1$ crore \times crore \times Vaw $=$ Alpha \times Vaw $=1$ Zain (1 with 126 zeros) as 127 digits

```
00000000000000,02 = 10 Zains
00000000000000,03 = 100 Zains
000000000000000,04 = 1000 Zains
00000000000000,05 = 10,000 Zains
00000000000000,06 = 1lakh Zains
00000000000000,07 = 10 lakh Zains
00000000000000,08 = 1 crore Zains (1 with 133 zeros)
00000000000000,09 = 10 croreZains
```

The fifteenth row with the addition of 15 left-side zeros
$000000000000000,01=100$ crore Zains (1 with 135 zeros) as 136 digits
$000000000000000,02=1000$ crore Zains
$000000000000000,03=10,000$ crore Zains

000000000000000,04 = 1lakh crore Zains
 $000000000000000,05=10$ lakh crore Zains (1 with 139 zeros)
 $000000000000000,06=1$ crore \times crore \times Zain $=$ Alpha \times Zain $=1$ Omega (1 with 140 zeros) as 141 digits

Nevertheless Omega + Omega = Omega
 Omega \times Omega $=$ Omega and
 Omega ${ }^{\text {Omega }}=$ Omega

It is similar to $0+0=0$
$0 \times 0=0$ and
$0^{0}=0$
But 0 - 0 is irrational. Nevertheless, $-0-0=-1$ in the anticlockwise direction

But Omega - Omega $=0$,
because ' 0 ' is the starting point and the beginning for all.
09-02-2019
The Man of the East

Years ago, this easy method of calculation of multicrores using left-side zeros was presented in the Calcutta Mathematical Society, India by the same Author while Prof. Dr. M. R. Adhikary was the Secretary there.

Rk-7b, Bhagwati Garden, Street No. 20, Jain Road, Uttam Nagar, New Delhi - 110059 Mob.:+91-9899043585 Email: superscience_promo@yahoo.in, superscience.promo@gmail.com www.superscienceinfo.com

[^0]: The New Discoveries in Mathematics in support of Universal Mathematics having 141 digits

