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The imaginary set of numbers is incorporated by extending the probability system of five axioms 
of Andrey Nikolaevich Kolmogorov set up in 1933 and this by adding three supplementary 
axioms. Therefore, any random experiment can thus be performed in the extended complex 
probability set C which is the sum of the real set R of real probabilities and the imaginary set M
of imaginary probabilities. The aim here is to determine the complex probabilities by taking into 
consideration additional new imaginary dimensions to the event that occurs in the “real” 
laboratory. The outcome of the stochastic phenomenon in C can be foretold perfectly whatever the 
probability distribution of the input random variable in R is since the corresponding probability in 
the whole set C is permanently and constantly equal to one. Therefore, the consequence that 
follows indicates that randomness and chance in R is substituted now by absolute determinism in 
C. This novel complex probability paradigm will be implemented to the field of prognostic based 
on reliability, hence to the concepts of the system remaining useful lifetime (RUL) and 
degradation. Additionally, the First-Order Reliability Method (FORM) analysis will be applied to 
Young’s modulus to illustrate my original and innovative paradigm.
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Abstract

The imaginary set of numbers is incorporated by extending the probability system of five axioms 
of Andrey Nikolaevich Kolmogorov set up in 1933 and this by adding three supplementary 
axioms. Therefore, any random experiment can thus be performed in the extended complex 
probability set C which is the sum of the real set R of real probabilities and the imaginary set M
of imaginary probabilities. The aim here is to determine the complex probabilities by taking into 
consideration additional new imaginary dimensions to the event that occurs in the “real” 
laboratory. The outcome of the stochastic phenomenon in C can be foretold perfectly whatever the 
probability distribution of the input random variable in R is since the corresponding probability in 
the whole set C is permanently and constantly equal to one. Therefore, the consequence that 
follows indicates that randomness and chance in R is substituted now by absolute determinism in 
C. This novel complex probability paradigm will be implemented to the field of prognostic based 
on reliability, hence to the concepts of the system remaining useful lifetime (RUL) and 
degradation. Additionally, the First-Order Reliability Method (FORM) analysis will be applied to 
Young’s modulus to illustrate my original and innovative paradigm.

Department of Mathematics and Statistics, Faculty of Natural and Applied Sciences, Notre
 Dame University-Louaize, Lebanon. Email: abdoaj@idm.net.lb

Nomenclature
R = Real probability set of events
M = Imaginary probability set of events
C = Complex probability set of events
i        = the imaginary number where 1−=i or 2 1i = −
EKA = Extended Kolmogorov's Axioms
CPP   = Complex Probability Paradigm
PRrobR = Probability of any event
PRr R      = Probability in the real set R = system failure probability
PRmR     = Probability in the imaginary set M corresponding to the real probability in R = system 
               survival probability in M
PRmR/i      = System survival probability in R
Pc     = Probability of an event in R with its associated event in M, it is the probability in the 
               complex set C
Z        = Complex probability number and vector, it is the sum of PRrR and PRm

DOK    = 2Z = Degree of Our Knowledge of the random experiment and event, it is the square   
               of the norm of Z.
Chf     = Chaotic factor
MChf  = Magnitude of the Chaotic factor 
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t = System cycles time
tRCR = System cycles time till failure
E          = Young modulus
EC        = Young modulus till system failure
f R(t)     = Failure probability density function of t
F(t)      = Failure cumulative distribution function of t
f R(E)     = Failure probability density function of E

ψ        = Simulation magnifying factor
1/ψ     = The normalizing constant of PRrR

D        = Degradation indicator of a system
RUL = Remaining Useful Lifetime of a system
PRrobR[RUL(t)] = Probability of RUL after a system cycles time t
PRrobR[RUL(E)] = Probability of RUL after a Young modulus E

The First-Order Reliability Method, (FORM), is a semi-probabilistic reliability analysis 
method devised to evaluate the reliability of a system. The accuracy of the method can be improved 
by averaging over many samples, which is known as Line Sampling [1,2].

The method is also known as the Hasofer-Lind Reliability Index, developed by Professor Michael 
Hasofer and Professor Neil Lind in 1974 [3]. The index has been recognized as an important step 
towards the development of contemporary methods to effectively and accurately estimate 
structural safety [4,5].

Moreover, reliability engineering is a sub-discipline of systems engineering that emphasizes 
dependability in the life cycle management of a product. Reliability, describes the ability of a 
system or component to function under stated conditions for a specified period of time
[6]. Reliability is closely related to availability, which is typically described as the ability of a 
component or system to function at a specified moment or interval of time.

The Reliability function is theoretically defined as the probability of success (Reliability =                1 – Probability of Failure); as, R(t), the probability of failure at time t; as a probability derived 
from reliability, availability, testability, and maintainability. Availability, testability, 
maintainability, and maintenance are often defined as a part of "reliability engineering" in 
reliability programs. Reliability plays a key role in the cost-effectiveness of systems for example 
cars have a higher resale value when they fail less often.

I. Introduction

Reliability and quality are closely related. Normally quality focuses on the prevention of defects 
during the warranty phase whereas reliability looks at preventing failures during the useful lifetime 
of the product or system from commissioning to decommissioning.

Reliability engineering deals with the estimation, prevention, and management of high levels of 
"lifetime" engineering uncertainty and risks of failure. Although stochastic parameters define and 
affect reliability, reliability is not (solely) achieved by mathematics and statistics [7,8]. One cannot 
really find a root cause (needed to effectively prevent failures) by only looking at statistics. "Nearly 
all teaching and literature on the subject emphasize these aspects, and ignore the reality that the 
ranges of uncertainty involved largely invalidate quantitative methods for prediction and 
measurement" [9]. For example, it is easy to represent "probability of failure" as a symbol or value 
in an equation, but it is almost impossible to predict its true magnitude in practice, which is 
massively multivariate, so having the equation for reliability does not begin to equal having an 
accurate predictive measurement of reliability.
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Reliability engineering relates closely to safety engineering and to system safety, in that they use 
common methods for their analysis and may require input from each other. Reliability engineering 
focuses on costs of failure caused by system downtime, cost of spares, repair equipment, personnel, 
and cost of warranty claims. Safety engineering normally focuses more on preserving life and 
nature than on cost, and therefore deals only with particularly dangerous system-failure modes. 
High reliability (safety factor) levels also result from good engineering and from attention to detail, 
and almost never from only reactive failure management (using reliability accounting and 
statistics) [10].

The word reliability can be traced back to 1816, and is first attested to the poet Samuel Taylor 
Coleridge [11]. Before World War II the term was linked mostly to repeatability; a test (in any 
type of science) was considered "reliable" if the same results would be obtained repeatedly. In the 
1920s, product improvement through the use of statistical process control was promoted by 
Dr. Walter A. Shewhart at Bell Labs [12], around the time that Waloddi Weibull was working on 
statistical models for fatigue. The development of reliability engineering was here on a parallel 
path with quality. The modern use of the word reliability was defined by the U.S. military in the 
1940s, characterizing a product that would operate when expected and for a specified period of 
time.

In World War II, many reliability issues were due to the inherent unreliability of electronic 
equipment available at the time, and to fatigue issues. In 1945, M.A. Miner published the seminal 
paper titled "Cumulative Damage in Fatigue" in an ASME journal. A main application for 
reliability engineering in the military was for the vacuum tube as used in radar systems and other 
electronics, for which reliability proved to be very problematic and costly. The IEEE formed the 
Reliability Society in 1948. In 1950, the United States Department of Defense formed group called 
the "Advisory Group on the Reliability of Electronic Equipment" (AGREE) to investigate 
reliability methods for military equipment [13]. This group recommended three main ways of 
working:
1) Improve component reliability.
2) Establish quality and reliability requirements for suppliers.
3) Collect field data and find root causes of failures.
Furthermore, in the 1960s, more emphasis was given to reliability testing on component and 
system level. The famous military standard MIL-STD-781 was created at that time. Around this 
period also the much-used predecessor to military handbook 217 was published by RCA and was 
used for the prediction of failure rates of electronic components. The emphasis on component 
reliability and empirical research (e.g. Mil Std 217) alone slowly decreased. More pragmatic 
approaches, as used in the consumer industries, were being used. In the 1980s, televisions were 
increasingly made up of solid-state semiconductors. Automobiles rapidly increased their use of 
semiconductors with a variety of microcomputers under the hood and in the dash. Large air 
conditioning systems developed electronic controllers, as had microwave ovens and a variety of 
other appliances. Communications systems began to adopt electronics to replace older mechanical 
switching systems. Bellcore issued the first consumer prediction methodology for 
telecommunications, and SAE developed a similar document SAE870050 for automotive 
applications. The nature of predictions evolved during the decade, and it became apparent that die 
complexity wasn't the only factor that determined failure rates for integrated circuits (ICs). Kam 
Wong published a paper questioning the bathtub curve [14] — one can refer also to reliability-
centered maintenance. During this decade, the failure rate of many components dropped by a factor 
of 10. Software became important to the reliability of systems. By the 1990s, the pace of IC 
development was picking up. Wider use of stand-alone microcomputers was common, and the PC 
market helped keep IC densities following Moore's law and doubling about every 18 months. 
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Reliability engineering was now changing as it moved towards understanding the physics of 
failure. Failure rates for components kept dropping, but system-level issues became more 
prominent. Systems thinking became more and more important. For software, the CMM model 
(Capability Maturity Model) was developed, which gave a more qualitative approach to reliability. 
ISO 9000 added reliability measures as part of the design and development portion of certification. 
The expansion of the World-Wide Web created new challenges of security and trust. The older 
problem of too little reliability information available had now been replaced by too much 
information of questionable value. Consumer reliability problems could now be discussed online 
in real time using data. New technologies such as micro-electromechanical systems (MEMS), 
handheld GPS, and hand-held devices that combined cell phones and computers all represent 
challenges to maintain reliability. Product development time continued to shorten through this 
decade and what had been done in three years was being done in 18 months. This meant that 
reliability tools and tasks had to be more closely tied to the development process itself. In many 
ways, reliability became part of everyday life and consumer expectations.

Finally, and to recapitulate, this research paper is structured as follows: After the introduction 
in section I, the advantages and the purpose of the present paper are presented in section II. Next, 
in section III, we will illustrate and explain the paradigm of complex probability with its novel
parameters and concepts. In section IV, we will do a review of reliability theory. In section V, we 
will apply the complex probability paradigm to prognostic based on reliability. Also, in section 
VI, we will apply FORM to prognostic. Furthermore, in section VII the new model will be applied 
to Young modulus. Additionally, in section VIII a comprehensive analysis will be achieved where 
we will clarify all the results and then display the equations of general prognostic. Finally, I 
conclude the paper by doing a complete summary in section IX, and then at the end cite the 
references supporting the current research work.

Computing probabilities is all our work in the classical theory of probability. Adding new 
dimensions to our stochastic experiment is the innovative idea in the current paradigm which will 
make the study absolutely deterministic. As a matter of fact, the theory of probability is a 
nondeterministic theory by essence that means that all the random events outcome is due to luck 
and chance. Hence, we make the study deterministic by adding new imaginary dimensions to the 
phenomenon occurring in the “real” laboratory which is R, and therefore a stochastic experiment 
will have a certain outcome in the complex probabilities set C. It is of great significance that 
random systems become completely predictable since we will be perfectly knowledgeable to 
predict the outcome of all stochastic and chaotic phenomena that occur in nature like for example 
in all stochastic processes, in statistical mechanics, or in the well-established prognostic field. 
Consequently, the work that should be done is to add the contributions of M which is the set of 
imaginary probabilities to the set of real probabilities R that will make the random phenomenon
in C = R + M completely deterministic. Since this paradigm is found to be fruitful, then a new 
theory in prognostic and stochastic sciences is established and this to understand deterministically 
those events that used to be stochastic events in R. This is what I coined by the term "The Complex 
Probability Paradigm" that was elaborated and initiated in my fourteen previous papers [15-28].

Furthermore, although the prognostic laws are sometimes deterministic and well-known in
general but there are chaotic and stochastic aspects (such as in engineering: geometry dimensions, 
humidity, water action, material nature, atmospheric pressure, applied load location, corrosion, 
soil pressure and friction, temperature, etc…) that influence the system and make its function of 
degradation deviate from its computed trajectory predicted by these deterministic laws. An updated 
follow-up of the behavior of degradation with cycle number or time, and which is under the 
influence of non-chaotic and chaotic effects, is done by what I named the system failure probability 
due to its definition that evaluates and calculates the jumps in the function of degradation D. 

II. The Purpose and the Advantages of The Present Work
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Moreover, my objective in this present paper is to link the complex probability paradigm to 
the system prognostic based on reliability by using FORM. In fact, the system failure probability 
derived from FORM will be included in and applied to the complex probability paradigm and then 
related to prognostic. This will lead to the novel and original prognostic model illustrated in this 
current work. Consequently, by calculating the new prognostic model parameters, we will be able 
to evaluate the degree of our knowledge, the magnitude of the chaotic factor, the system survival 
and failure probabilities, the complex probability, and the RUL probability, after that a simulation
cycles time t or a Young modulus E has been applied to the studied system and which are all 
functions of the system degradation under the influence of random and chaotic influences. An 
application of the novel model to Young modulus will be done to illustrate the original idea and 
method.

Subsequently, to summarize, the advantages and the objectives of the current work are to:

1- Relate probability theory to the field of complex variables and analysis in mathematics and 
therefore to extend the theory of classical probability to the set of complex numbers. This 
task was elaborated and initiated in my fourteen previous papers.

2- Do an updated follow-up of the behavior of degradation D with cycle number or time or 
Young modulus E which is under the influence of chaos. This follow-up is achieved by the 
system real failure probability computed by FORM due to its definition that calculates the 
jumps in D; and thus, to relate a system degradation to probability theory in an innovative
and a new way. 

3- Extend the concepts of prognostic to the complex set C of probabilities by applying the 
novel probability paradigm and axioms to prognostic.

4- Demonstrate that any stochastic and random event and experiment can be expressed 
deterministically in the complex probabilities set C.

5- Quantify both the chaos magnitude and the degree of our knowledge of the system 
remaining useful lifetime and its degradation.

6- Represent graphically and illustrate the parameters and functions of the original paradigm 
related to the system prognostic and to Young modulus.

7- Demonstrate that the classical concepts of stochastic remaining useful lifetime and 
degradation have a probability of occurring permanently equal to one in the complex set; 
consequently, no disorder, no ignorance, no unpredictability, no stochasticity, no 
randomness, no nondeterminism, and no chaos exist in:

C (complex set) = R (real set) + M (imaginary set).

8- Show that we will be able to do prognostic in a deterministic way in the complex set C by 
adding new and supplementary imaginary dimensions to any stochastic system and random
experiment.

9- Prepare to apply the novel paradigm to other topics in stochastic processes, in statistical 
mechanics, and to the field of prognostics in science and engineering. This will be the task
in my following research work and publications. 
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Figure 1:   

  

 

 

 
  

  
 

  
   

 
   

 
   

 

   

 

 

 

 

 

The novel proposed mathematical prognostic paradigm will be applied to practical engineering 
and as a future work, it will be implemented in the study of a wide set of dynamic systems like 
offshore and buried petrochemical pipes and vehicle suspension systems which are under the 
influence of fatigue and in the nonlinear and linear cases of damage accumulation. 

To recapitulate, compared with existing literature, the major contribution of the present work
is to apply the novel complex probability paradigm to the concepts of stochastic remaining useful 
lifetime and degradation of a system therefore to the field of prognostic and to Young modulus.

The following figure recapitulates the objectives of the present work (Figure 1):

Complex 
Probability
Paradigm

Probability 
Theory

Complex 
Analysis

Prognostic

FORM

Linked to

Linked to

Linked to

Linked to

The major objectives of the Complex Probability Paradigm (CPP)

III. The Extended Set of Probability Axioms [29-72]

In this section, we will present the extended set of probability axioms of the complex 
probability paradigm.

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 
of elements {ER1R, ER2R, …} called elementary events and let F be a set of subsets of E called random 
events. The five axioms for a finite set E are [29-32]:

Axiom 1:  F is a field of sets.
Axiom 2:  F contains the set E.
Axiom 3:  A non-negative real number PRrobR(A), called the probability of A, is assigned to each
                 set A in F. We have always 0 ≤ PRrobR(A) ≤ 1.
Axiom 4:  PRrobR(E) equals 1.
Axiom 5:  If A and B have no elements in common, the number assigned to their union is:

)()()( BPAPBAP robrobrob +=∪
hence, we say that A and B are disjoint; otherwise, we have:

)()()()( BAPBPAPBAP robrobrobrob ∩−+=∪

And we say also that: )/()()/()()( BAPBPABPAPBAP robrobrobrobrob ×=×=∩ which is the 
conditional probability. If both A and B are independent then: )()()( BPAPBAP robrobrob ×=∩ .

3.1   The Original Andrey Nikolaevich Kolmogorov Set of Axioms 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

6 Volume 20 | Issue 4 | Compilation 1.0  © 2020 London Journals Press

The Paradigm of Complex Probability and Prognostic Using FORM



 

   

 

 

 

  

 

 
3.2  Adding the Imaginary Part M

 

 

  

    

  

  

  

  
   
 

   

 

 

 

 

  

   
 

 
  

  
 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events
Nj AAAA ,,,,, 21  (for Nj ≤≤1 ), we have the following additivity rule:  

( )j

N

j
rob

N

j
jrob APAP ∑

==

=










11


And we say also that for N independent events Nj AAAA ,,,,, 21  (for Nj ≤≤1 ), we have the 
following product rule:  

( )∏
==

=








 N

j
jrob

N

j
jrob APAP

11


Now, we can add to this system of axioms an imaginary part such that:

Axiom 6:  Let )1( rm PiP −×= be the probability of an associated event in M (the imaginary 
                 part) to the event A in R (the real part). It follows that 1/ =+ iPP mr where i is the 

                 imaginary number with 1−=i or 2 1i = − .
Axiom 7:  We construct the complex number or vector )1( rrmr PiPPPZ −+=+= having a

                  norm Z such that: 222 )/( iPPZ mr += . 
Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C
                 where C = R + M. We say that Pc is the probability of an event A in R with its 
                 associated event in M such that: 

mrmr PiPZiPPPc 2)/( 222 −=+= and is always equal to 1.

We can see that the system of axioms defined by Kolmogorov could be hence expanded to take 
into consideration the set of imaginary probabilities by adding three novel axioms [33-45].

It is clear from CPP extended set of axioms that adding to any real event an imaginary 
counterpart makes the event probability in the set C permanently equal to one. As a matter of fact, 
understanding will follow directly if we start to conceive the set of probabilities as divided into 
two complementary parts: one probability part is real and the other probability part is imaginary. 
The stochastic event that occurs in the real set R of probabilities (like getting a head when tossing 
a coin) has a corresponding probability rP . Now we denote by M the set of imaginary probabilities 

and we denote by 2Z the Degree of Our Knowledge (DOK for short) of this stochastic event. rP
is according to Kolmogorov’s axioms, and as always, the probability of the random phenomenon. 

A full ignorance of the probability set M leads to:        

5.0=rP and 2Z DOK= in this case is equal to: 5.0)5.01()5.02(1)1(21 =−××−=−− rr PP
Conversely, a perfect knowledge of the set in R leads to:

3.3 The Purpose of Extending the Axioms 

 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

7 © 2020 London Journals Press Volume 20 | Issue 4 | Compilation 1.0

The Paradigm of Complex Probability and Prognostic Using FORM



 

 

 
 

 

  

 
 

 

  

 

  

 

 

  

 

 
  

 

  
  

 
 

  

 

 

 

  

PRrobR(event) 1== rP   and  mP = PRrobR(imaginary part) = 0. Here we have 
2 1 (2 1) (1 1) 1Z DOK= = − × × − = because the random event is totally and perfectly known, that 

is, all its variables and laws are fully determined; therefore, our degree of our knowledge of the 
stochastic event is 1 = 100%.

Now, if we are sure that an event is impossible and will never occur, that is, like ‘getting nothing’ 
(the empty set), rP is accordingly = 0, that is the event will never happen in R. Hence, mP will be 

equal to: iiPi r =−=− )01()1( , and 
2 1 (2 0) (1 0) 1Z DOK= = − × × − = , because we can tell that 

the event of getting nothing surely will never happen; thus, the Degree of Our Knowledge (DOK) 
of the stochastic event is 1 = 100%. [15]

We can infer that we have always:

20.5 1,    :  0 1r rZ DOK P P≤ = ≤ ∀ ≤ ≤ and
                                   222 )/( iPPDOKZ mr +== , where 1/,0 ≤≤ iPP mr                                   (1)

And what is truly significant and crucial is that we have in all cases:

                        [ ] 11)1(2)/( 22222 ==−+=−=+= rrmrmr PPPiPZiPPPc                                (2)

As a matter of fact, the game is a game of chance according to an experimenter in R: the 
experimenter ignores the outcome of the random event. Accordingly, a probability rP is assigned 
to each outcome and he will affirm that the output and result are nondeterministic. But an observer 
will be able to foretell the output of the game of chance in the probability universe C = R + M, 
since he considers the contribution of the probability set M, so he states that:

22 )/( iPPPc mr +=

therefore Pc is permanently equal to one. Actually, the addition to our stochastic experiment of 
the imaginary probability set M leads to the abolition of indeterminism and ignorance. 
Subsequently, the study of this class of events in the set C is of great worth since we will be able 
to foretell with certainty the outputs of the conducted random experiments. As a matter of fact,
conducting experiments in R leads to uncertainty and unpredictability. Consequently, and to study
all random phenomena, we place ourselves in C instead of placing ourselves in R then study the 
random phenomena, since in C the contributions of M are considered and hence a deterministic 
study of the random events becomes conceivable. Conversely, when we consider the contribution 
of the probability set M we place ourselves in C and when we ignore M we restrict our study to 
nondeterministic and probabilistic events in R. [46-56]

Furthermore, we can infer from the axioms and definitions stated above that [15]:

)1(2)1(2            
)1(22

2
rrrr

rrmr

PPPPi
PiPiPiP

−−=−××=

−×××=
                                                                                    

ChfPiP mr =⇒ 2                                                                                                                             (3)
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mr PiP2 will be called the UChUaotic factor in our random experiment and we will denote it
accordingly: ‘Chf’. We will understand now why we have called this term the chaotic factor. As a 
matter of fact:

In case 1=rP , that is the case of an event which is certain, then the event chaotic factor is equal 
to 0.
In case 0=rP , that is the case of an event which is impossible, then the event chaotic factor is 
equal to 0 also.
Therefore, in both two last cases, there is no chaos since the outcome is known in advance and is 
certain.

In case 5.0=rP , that is in the case of complete ignorance, then the event chaotic factor is equal to 
–0.5. (Figures 2-4)

We can infer that: 

10  :    ,05.0 ≤≤∀≤≤− rr PPChf .

What is crucial here is that we have consequently quantified both the chaotic factor and the degree 
of our knowledge of any stochastic phenomenon and thus we state now:

                                                 ChfDOKPiPZPc mr −=−= 222                                                

Therefore, we can conclude that:

2Pc = Degree of our knowledge of the system – Chaotic factor = 1,

Hence, 1=Pc permanently.

This straightforwardly can be interpreted as follows: if we succeed to eliminate and subtract the 
chaotic factor in any stochastic phenomenon, like we have done in the equation above, then the 
outcome probability will be permanently equal to one. [57-72]

(4)
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Figure 4: DOK, Chf, and Pc for a Lognormal probability distribution in 3D with 
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The graph below illustrates the linear relation between both DOK and Chf. (Figure 5)
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Additionally, the absolute value of the chaotic factor will be required in our current work which
will evaluate for us the magnitude of all the random and chaotic influences on the studied stochastic 
system that is materialized by the random simulation cycles time t and a probability density 
function, and which leads to an increasing system chaos in the set R and sometimes to a premature 
system failure. We will denote this new term accordingly Magnitude of the UChUaotic factor or MChf
[15-28]. Therefore, we can deduce what follows:

10  :   ,0)1(222 ≤≤∀≥−=−=== rrrrmrmr PPPPPiPPiPChfMChf ,                                         (5)
And

1,       
00.5  since    ,         

2

=+=

≤≤−+=

−=

MChfDOK
ChfChfDOK

ChfDOKPc
                                                                                    

0.50 ≤≤⇔ MChf where 10.5 ≤≤ DOK .

The graph below (Figure 6) illustrates the linear relation between both DOK and MChf.
Additionally, Figures 7-13 illustrate the graphs of Chf, MChf, DOK, and Pc as functions of the real 
probability PRrR and of the random variable X for any probability distribution and for a Lognormal
distribution. It is significant to mention here that we could have considered deliberately any 
random distribution besides the Lognormal probability distribution like the discrete Binomial or 
Poisson random distributions or the continuous standard Gaussian normal distribution, etc. 
Although the graphs would have looked different whether in 2D or in 3D but the mathematical 
interpretations and consequences would have been similar for any imaginable and possible random
distribution. This hypothesis is confirmed in my fourteen previous published papers by the mean 
of many illustrations encompassing both continuous and discrete probability distributions [15-28].

The Complex Probability Paradigm Parameters for Any Probability Distribution

Graph of PcMChfDOKPc ==+= 12 for any probability distribution
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Chf and MChf for any probability distribution in 2D
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Chf and MChf for any probability distribution in 3D with MChf + Chf = 0

Chf and MChf for a Lognormal probability distribution in 3D with
MChf + Chf = 0



 
 

 
 

  
 

 
 

   

 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

  

 

 

  
   

 
 

 

 

 

 

 
 

 

 

 
 

 
 

 

 
 

 
 
  

   

 
 

 

  
  

 
 

 

 
 
 

Figure 13:

0 0.2 0.4 0.5 0.6 0.8 1

-0.5

0

0.5

1

Real Probability Pr

C
h

f,
 M

C
h

f,
 D

O
K

, 
a
n

d
 P

c

Chf

MChf

DOK

Pc

The Complex Probability Paradigm Parameters for Any Probability Distribution 

 
Chf, MChf, DOK, and Pc for any probability distribution in 2D 

 
 
 
 
 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

16 Volume 20 | Issue 4 | Compilation 1.0  © 2020 London Journals Press

The Paradigm of Complex Probability and Prognostic Using FORM

To recapitulate and to conclude, we state that in the real probability universe R our degree of our 
certain knowledge is undesirably imperfect and hence unsatisfactory, thus we extend our analysis 
to the set of complex numbers C which incorporates the contributions of both the set of real 
probabilities which is R and the complementary set of imaginary probabilities which is M. 
Afterward, this will yield an absolute and perfect degree of knowledge in the probability universe 
C = R + M because Pc = 1 constantly. As a matter of fact, the work in the complex universe C
gives way to a sure prediction of any stochastic experiment, because in C we remove and subtract 
from the computed degree of our knowledge the measured chaotic factor. This will generate a 
probability in the universe C equal to 1 (Pc2 = DOK − Chf = DOK + MChf = 1 = Pc). Many 
illustrations taking into consideration numerous continuous and discrete probability distributions 
in my fourteen previous research papers confirm this hypothesis and innovative paradigm [15-28]. 

The Extended Kolmogorov Axioms (EKA for short) or the Complex Probability Paradigm (CPP
for short) can be shown and summarized in the next illustration (Figure 14):



  

 

 

 

  
   

 

 
 

  
 

 

  

 

 

 
  

 
  

 
   

 
 

 
 

 

 

 

 

  

 

 
 
 
 

 
 
 
 
 
 
 
 

 
 
 
 

The EKA Paradigm or the Complex Probability Paradigm (CPP) 

 

Output: complex set C 
 

5 original 
Kolmogorov’s 

axioms 

+ 3 additional axioms 

Add Imaginary set M 
 

Input: real set R 
 

8 CPP axioms 

Imaginary Probability Pm 
Chf  =2iPrPm 
MChf  =|Chf | 
DOK = Z2= Pr

2 + (Pm/i)2 

 Total 
Determinism 

Chance  
& Luck 

Figure 14:

IV. Review of Reliability Theory [73-76]
 
 The reliability is the probabilistic evaluation of a limit state of performance on a domain of 

basic variables. As a matter of fact, it is obtained by the computation of the probability of failure 
toward a limit state or criterion. 

 
4.1  Methodology
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Real Probability Pr

Complex numberZ= Pr + Pm
Complex Probability Pc = 1
Pc2 = DOK–Chf

Pc2= DOK+MChf

1) Identify the basic parameters intervening in the limit state
2) Identify the limit states that govern the lifetime of the structure
3)     Deduce their probability density functions
4)      Compute the failure probability that expresses the risk when the limit states are not satisfied.  

There exist two types of methods which are: The first method is the Monte Carlo simulation and 
the second method is the approximate method FORM (First-Order Reliability Method). The Monte 
Carlo simulation method is based on a large number of simulations and we must use N simulations 
when we want to evaluate a probability of order of ( 4)10 N− + .

The approximate method FORM is an iterative procedure that permits us to compute an index of 
reliability which is denoted by β . The index β is the distance between the origin and the limit 
state function G(t) in a standard space. Once we have computed β we can deduce the failure 
cumulative probability which is: )( β−Φ=rP .

In FORM approximation the real (usually nonlinear) limit state is replaced by its tangent plane 
at a specific point called the Most Probable Failure Point (MPFP). This point is the closest point 
on G(t) to the origin.

The limit state G(t) divides the space into two regions:

• The first region where G(t) > 0 called safe region
• and the second region where G(t) ≤ 0 called failure region 

Complex number Z = Pr + Pm
Complex Probability Pc = 1                      
          Pc2 = DOK – Chf

Pc2 = DOK + MChf
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In the general case, we choose N random variables correlated and of any density functions as 

well as a nonlinear limit state function. This method is based on the following iterative 
algorithm: 

 

 
The transformation from the basic state to the normalized state is implicit in the algorithm. The 
detailed steps of the algorithm are the following (Figure 15): 
 
Let the limit state equation be: )(zg  

where nzzzzz ,,,, 321   is the random vector of the limit state; therefore: 

 
1) Initialize the coordinates of the MPFP. The mean value of each variable is a good choice. 

nzzzz  ,,,
21

1   
 

2) Calculate the following parameters: (m is the number of the iteration) 
 

The value of the limit state at the MPFP: 

 mmm zzgg 210 ,,  
 

The gradient at the MPFP is assumed to be: 

 mm

i

m
i zz

z

g
g 21 ,,




  

 
The equivalent normal standard deviation and mean value of non-normal variables: 

4.2   Work Plan

4.3  Description of the Algorithm
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3) Calculate the intermediate parameters:  
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
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
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1) Converting basic random variables to standard normal variables N (0,1)
2) Converting the limit state from the original space to the standard normal space
3) Searching of the MPFP point by replacing the limit state surface by its tangent hyper-plane at 

the same point.
4) Computing the index β and consequently the failure cumulative distribution function rP .
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4) Calculate: 

 
   The directive cosine:     

m
z

m
i

m
i

i

g




   

The reliability index: 

m
z

m
z

mm
m gz







 0  

 
The new coordinates of the MPFP:   

m
i

mm
i

m
i

m
iz    

 
5) Verify the convergence criterion: 

 
1 tolerancem mz z   and 1 tolerancem m     

 
6) Repeat the steps from 2 till 5 until convergence. 

 
7) Calculate the failure cumulative distribution function (CDF):  

 

( )rF P      

  
                 The First-Order Reliability Method illustration. Figure 15:
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V.   Application of the Complex Probability Paradigm to Prognostic Based on 
Reliability [15-28] [77-87]

In engineering systems, the prediction of the remaining useful lifetime is related deeply to 
many aspects and factors that generally have a chaotic and random behavior which decreases the 
degree of our knowledge of the entire system.  
 

 

Let us consider a degradation trajectory D(t) of a system where a specific instant kt is studied. 

The instant kt  means here the time or age that can be measured also by the cycle number N. 

(Figure 16) 
 

5.1  The Basic Parameters of the New Model

( )  ( ) 0k kMChf t Chf t  and 
2 ( ) ( ) ( )

            ( ) ( )  ,     since  0.5 ( ) 0 

             ( ) ( ) 1, :  0

k k k

k k k

k k k k C

Pc t DOK t Chf t

DOK t Chf t Chf t

DOK t MChf t t t t

 

    

     

 

0 ( ) 0.5kMChf t    where 0.5 ( ) 1kDOK t   
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As we have shown, we can deduce from CPP that if we add to an event probability in the real set 
R the imaginary counterpart M (like the lifetime variables) then we can predict the exact 
probability of the remaining lifetime with certainty in C (since Pc = 1 permanently). We can apply 
this idea to prognostic analysis through the degradation evolution of a system. As a matter of fact,
prognostic analysis consists in the prediction of the remaining useful lifetime of a system at any 
instant kt and during the system functioning. 

Referring to Figure 17, the previous statement means that at the system age kt , the prognostic 
study must give the prediction of the failure instant Ct . Therefore, the RUL predicted here at the 
instant kt is the following interval:                             ( )k C kRUL t t t= −                                                              (6)

In fact, at the beginning ( 0kt = ) (point J), the system failure probability Pr = 0 and the chaotic 
factor in our prediction is zero (Chf = 0) since chaos has not started its deteriorating and harmful 
effect on the system yet. The system is intact and in raw state; therefore, (0) 0C CRUL t t= − = .

If k Ct t= (point L) then the ( ) 0C C CRUL t t t= − = , the system failure probability is one (Pr = 1), 
and the chaotic factor in our prediction is zero (Chf = 0) since chaos has finished its deteriorating 
and harmful effect on the worn-out system and failure has certainly occurred.

If not (i.e. 0 k Ct t< < ) (point K), the probability of the occurrence of this instant and the prediction 
probability of RUL are both less than one (not certain) due to non-zero chaotic factors since chaos 
has begun its damaging influence (–0.5 ≤ Chf < 0). Consequently, the system failure probability 
is: 0 < Pr < 1 for the same reason. The degree of our knowledge DOK is accordingly less than 1. 
Thus, by applying here the CPP model, we can determine the system RUL and degradation with 
certainty in C = R + M where Pc = 1 always.

Furthermore, we need in our current study the absolute value of the chaotic factor that will give us 
the magnitude of the chaotic and random effects on the studied system. Hence, we can deduce that 
at any instant : 0k k Ct t t≤ ≤ , the MChf influencing and acting on the system is the following:

The Paradigm of Complex Probability and Prognostic Using FORM



  
 

 

 
    

 
 

 
    

 

 

   

 

   

  
 

 
 

Figure 17:  
   

 

 

 

 

 

CPP and the prognostic of degradation :   Figure 16
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RUL(tk) = RUL[D(tk)] = tC– tk 
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Moreover, we can define two complementary events E  and E  with their respective probabilities: 
 

( )robP E p and  ( ) 1robP E q p    

 

Then ( )robP E  in terms of the instant kt is given by: 

 

 ( ) ( ) ( )rob r k rob k kP E P t P t t F t                                              (7) 

 
where F is the cumulative probability distribution function (CDF) of the random variable t.  
 

Since ( ) ( ) 1rob robP E P E  , therefore, 

 

( ) 1 ( ) 1 ( ) 1 ( ) 1 ( ) ( ) ( ) /rob rob r k rob k k rob k m kP E P E P t P t t F t P t t P t i                     (8) 

 
Let us define the two particular instants: 

0kt   assumed as the initial time of functioning (raw state) corresponding to D = D0 = 0, 

and  

Ct = the failure instant (wear-out state) corresponding to the degradation D=1. 

The boundary conditions are: 

For 0kt   then D = D0 (initial damage that may be zero or not)  

       and ( ) ( 0) 0k robF t P t    

For k Ct t then D=1 and ( ) ( ) ( ) 1k C rob CF t F t P t t    . 

 

Also ( )kF t  is a nondecreasing function that varies between 0 and 1. In fact, ( )kF t  is a 

cumulative CDF function (Figure 18).  
 
In addition, since ( )

k C kRUL t t t  and since time kt  is always increasing (0 k Ct t  ) then 

( )kRUL t is a nonincreasing remaining useful lifetime function (Figure 17). 
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General system failure CDF Figure 18:  

Degradation prognostic model Figure 19:  
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Referring to Figures16 to 19, we can infer the following: 
 

The complementary imaginary probability to ( )r kP t  in M is ( )m kP t  and it is equal to: 

 ( ) 1 ( )m k r kP t i P t  (9) 
 

The complex probability number or vector is: 

 ( ) ( ) ( ) ( ) 1 ( )k r k m k r k r kZ t P t P t P t i P t                                          (10) 

 

The Degree of Our Knowledge DOK is the square of the norm of ( )kZ t and it is equal to: 

       
22 2 22

2

( ) ( ) ( ) ( ) / ( ) 1 ( ) /

           1 2 ( )[1 ( )]

           1 2 ( ) 2[ ( )]

k k r k m k r k r k

r k r k

r k r k

Z t DOK t P t P t i P t i P t i

P t P t

P t P t

       

  

  

                                 
(11) 

 
The Chaotic Factor is:  

   

 

2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 1 ( )    since   1

            2 ( ) 2 ( )

k r k m k r k r k r k r k

r k r k

Chf t iP t P t iP t i P t P t P t i

P t P t

       

  
                 

(12) 

( )kChf t is null when ( ) (0) 0r k rP t P  (point J) or when ( ) ( ) 1r k r CP t P t  (point L). 

The Magnitude of the Chaotic Factor is: 

 
2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( )

                2 ( )[1 ( )]   since   1

                2 ( ) 2[ ( )]

k k r k m k r k r k

r k r k

r k r k

MChf t Chf t iP t P t iP t i P t

P t P t i

P t P t

     

   

 

                                                    
(13) 

( )kMChf t is null when ( ) (0) 0r k rP t P  (point J) or when ( ) ( ) 1r k r CP t P t   (point L), 

 

At any instant :kt 0 k Ct t   (J ≤ K ≤ L), the probability expressed in the complex set C is: 

   
   

2 2 2

2 2

( ) ( ) ( ) 1 2 ( ) 2[ ( )] 2 ( ) 2[ ( )]

            ( ) ( ) 1 2 ( ) 2[ ( )] 2 ( ) 2[ ( )]

            1

k k k r k r k r k r k

k k r k r k r k r k

Pc t DOK t Chf t P t P t P t P t

DOK t MChf t P t P t P t P t

       

      



              (14) 

( ) 1kPc t  always 

And 

Hence, the prediction of ( )kRUL t andof the system degradation ( )kD t in C= R+M is permanently 

and totally certain and perfect. 
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( ) ( ) ( ) / ( ) [1 ( )] 1k r k m k r k r kPc t P t P t i P t P t= + = + − = always. (15)
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 Let us present in this section the basic assumption of the new prognostic model. We 
consider firstly the cumulative probability distribution function F(t) of the random time variable 
t which was calculated by FORM as being equal to: 

                                      (16) 

We note that we are dealing here with discrete random functions depending on the discrete 
random time t of simulations.  
 

Then, we assume secondly that the real system failure probability /)(tPr  at the instant ktt  is 

equal to: 

1( ) ( ) [ ( ) ( )]r k k rob k rob kP t F t P t t P t t        












 









1-

00

)(  )(
kk tt

tt

rob

tt

tt

rob tPtP  

)()( 1

1

kkrob

tt

tt

rob tttPtP
k

k

 








  

5.2  The New Prognostic Model

1[ ( ) ( )]k kD t D t    (17)                                            

            =   times the jump in D(t) from 1 ktt  to ktt   (Figures 20 & 21), 

where, 

],210[ 11 Ckkk- t,,t,t,t,,,t   = the time of simulation cycles, and  

t0 = 0 = the initial time of cycles at the simulation beginning. It corresponds to a  
             degradation D = D(t0) =D0 which is generally considered to be nearly equal to 0. 
t1 = 1 = the first simulation cycle time; 
... ... ... 
tk = the kthsimulation cycle time; 
... ... ... 
tC = the time of simulation cycles till system failure = the critical number of simulation time. It 
corresponds to D = D(tC) =DC = 1. 
 = the simulation magnifying factor that depends on the simulation profile.   is equal 

to 724.3113. 
 
Consequently, the recursive relation for degradation as a function of the failure probability 

/)(tPr is the following: 

1( ) ( ) ( ) /k k r kD t D t P t    

1( ) ( ) ( ) /k k kD t D t F t     

 /)()()( 1  kk tDtD                                                     (18) 
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This basic assumption is plausible since: 

1- Both D and F are cumulative functions starting from 0 and ending with 1.  
2- Both are nondecreasing functions. 
3- Both functions are without measure units: D is an indicator quantifying degradation 

and system damage as well as F which is an indicator quantifying chance and 
randomness. 

 
Thus, initially we have: 

0 0( 0) ( ) 0r kP t t F t   
 

Moreover,

 
)( /)(/)()( )( kkrkkr tftPtftP   ,                                 (19)

 

Where /1 is a normalizing constant that is utilized to transform )()( kr tP function to a 

probability density function with a total probability equal to one. /1 depends on the simulation 

mode and conditions.Subsequently, we deduce that )( ktf  is the usual probability density 

function (PDF) for any simulation mode. Knowing that, from classical probability theory, we 
have permanently:  

 1 /)()( 
00











Ck

k

Ck

k

tt

tt

kr

tt

tt

k tPtf   

This result is reasonable since /)( kr tP  is here a probability density function. (Figures 20& 21) 

 
Therefore, we can deduce that: 

  (20) 

 

0 0

0

0

( ) ( )

               ( ) ( )

k C k C

k k
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t t t t

r k k
t t t t
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rob rob C
t t

P t F t

ψ P t ψ P t t t

 

 







     

 


 

 

   
0

0

( ) ( )

1 0 ,   

C

C

               ψ D t t D t t

               ψ D D ψ ψ

    

      
 

0 0since ( ) 1 and ( ) 0 and ( ) is taken as = 0CD t D t F t   

 )(1)(
00

ψψtf ψ
Ck

k

Ck

k

tt

tt

tt

tt

k  








  

0 0 0

( ) / ( ) / ( ) / / 1.
k C k C k C

k k k

t t t t t t

r k k
t t t t t t

P t F t     
  

  

        

We can observe that D(t) is a discrete random function where the amount of the jump in the 

degradation discrete curve is /)(tPr ; therefore, /)(tPr  is a function of degradation and 

damage evolution (Figures 20 & 21). And we can realize from the previous calculations that 

/)(tPr  is a probability density function. Consequently, we can understand now that /)(tPr  

measures the probability of the system failure or degradation. Accordingly, what we have done 
here is that we have linked probability theory to degradation measure. 
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Notice that:  

and 

If 00 0 0 ( ) 0k r kt D D F P t         

if 1)(11  krCCk tPFDDtt . 

This, since the degradation is flat near 0 and starts increasing and becoming more acute with 
time t; hence, at tC, D is the greatest and is equal to 1. (Figures 21 & 22) 
 
Furthermore, we have: 

kCk tttRUL )(  and it corresponds to a degradation )( ktD , 

And 

11)(   kCk tttRUL  and it corresponds to a degradation )( 1ktD . 
 
This implies that (Figure 23): 

1

1

( ) [ ( ) ( )]

         { [ ( )] [ ( )]}

r k k k

C k C k

P t D t D t

D t RUL t D t RUL t








  

    
                                                  (21) 

 

5.3   Analysis and Extreme Random and Stochastic Environments
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1/)(0 ≤≤ ψkr tP , 1)(0 ≤≤ ktF , and 0( 0) ( ) ( 1)k CD D t D= ≤ ≤ = , for every tk: 0 ≤ tk ≤ tC
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1
0 0

( ) / ( ) ( ) ( ) (0 ) 1 0 ( ) ( ) / / 1
C Ct t t t

r k k k C rob
t t

P t D t D t D t D P tψ β ψ ψ ψ
= =

−
= =

= − = − = − = = Φ − = =∑ ∑

Even though the prognostic laws are sometimes deterministic and well-known in general 
[88-100] but there are chaotic and stochastic aspects (such as in engineering: geometry dimensions, 
humidity, water action, material nature, atmospheric pressure, applied load location, corrosion, 
soil pressure and friction, temperature, etc…). Additionally, many variables in the expression of 
degradation which are believed to be deterministic may as well adopt a stochastic behavior, such 
as in engineering and in pipelines and suspension prognostic: the magnitude of the applied pressure 
(due to the various conditions of pressure profile) and the length of the initial crack (potentially 
occurring during the process of manufacturing). All those stochastic aspects, embodied in the 
prognostic models by their average values, influence the system and make its function of 
degradation diverge from its computed path foretold by these deterministic rules. An updated 
follow-up of the behavior of degradation with cycle number or time, and which is under the 
influence of chaotic and non-chaotic aspects, is done by ψ/)(tPr due to its definition that 
evaluates the jumps in D. In fact, chaos alters and affects all the environment and system 
parameters included in the expression of degradation. Consequently, chaos total effect on the 
system contributes to shape the curve of degradation D and is embodied and counted in the system 
failure probability ψ/)(tPr . Actually, ψ/)(tPr quantifies the resultant of all the nondeterministic 
(stochastic) and deterministic (non-stochastic) factors and parameters which are included in the 
equation of D, which influence the system, and which determine the consequent final curve of 
degradation. Accordingly, an accentuated effect of chaos on the system can lead to a smaller (or 
bigger) jump in the trajectory of degradation and thus to a smaller (or bigger) probability of failure

ψ/)(tPr . If for example, due to extreme random influences and deterministic causes, D jumps 
directly from 0 0D to 1 then RUL goes straight from tC to 0 and subsequently ψ/)(tPr jumps 
instantly from 0 to 1:

=



 
 
 

 

 

 

    

 

  

 
  

  

 
 

 
 

  

 

  

  

where t goes directly from 0 to tC. 
 
In the extreme ideal situation, if the system never deteriorates (no pressure or stresses) and with 
zero chaotic effects and random influences, then the resultant of all the deterministic and 
nondeterministic aspects is null (like in the system isolated and idle state). Accordingly, the 

system remains indefinitely at 0 0D   and RUL stays equal to tC . So consequently, the jump in D 

is always 0. Therefore, ideally, the probability of failure persists 0: 
 

0                

][                 

)]()([/)(

00

1





 

DD

tDtDtP kkkr 

 

 

where 0 1 1 1 0( ) ( ) ( ) ( ) ( ) 0,  k k kD t D t D t D t D t D           

 ,3,2,1,0for  k  

 

 Pr, degradation, and the CDF step function Figure 20:  
 

Figure 20 shows the real failure probability PRrR(t) as a function of the random system 
degradation step CDF in terms of the simulation cycles time t. 
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Figure 21 shows the real failure probability PRrR( t) as a function of the random system 

degradation in terms of the simulation cycles time t. 
 

Pr as a function of Degradation D(t) 
 
Figure 21:  

 

 

                  Degradation and Pr Figure 22:  
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Figure 22 shows the real failure probability Pr(t) and the random system degradation D(t) as 
functions of the number of the simulation cycles time t.

Pr (t = 192.5) = D(t = 400) = 0.1862 



 
 

 

 
 
  

 

 

 

  

 

 
 

Figure 23 shows the real failure probability P Rr R(t) as a function of the random system degradation 
D (t) and the random system RUL (t) in terms of the simulation cycles time t. 

 

 
In this part, we study the CPP in the context of reliability by defining a limit state G that 

describes the lifetime margin of the system.  
 
We have: 

( ) ( )k C k kG t t t RUL t  
                                                       (22) 

 

where )( ktG  is the limit state of lifetime. 

tC: is the fixed lifetime of the system which follows a normal distribution N (60, 1) 
tk : is an arbitrary instant that varies from 0 to tC and which follows a normal distribution 

N  ,0 1k kt . t  

 

Pr , D, and RUL Figure 23:

VI. Application of FORM to Prognostic [15-28] [73-76]
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When )( ktG is zero or negative then we have a case of tk tC that means that we have a system 

failure that cannot live until the instant tk. In the other case where tk<tC, the system can live above 
the instant tk and we have a case of success. 

 

The reliability index  )( 1
kr tP  where )( kr tP is the cumulative distribution probability 

function and  is the normal cumulative distribution function. Hence, 1 is the inverse of  

and )()( kr tP    (23) 

The failure cumulative distribution function computed by the FORM procedure is:  
 

)(}{0})({)(  Ckrobkrobkr ttPtGPtP (24) 

It corresponds in system prognostic to: { ( ) 0}rob kP RUL t   

 
Therefore, the survival cumulative distribution function computed by the FORM procedure is:  

{ ( ) 0} { } 1 ( ) ( ) / 1 ( )rob k rob k C r k m kP G t P t t P t P t i          (25) 

It corresponds in system prognostic to: { ( ) 0}rob kP RUL t   

 

In CPP, the real part of probability is taken here )( kr tP . As we make the instant tk vary 

between 0 and tC, then ( ) ( )r k kP t F t varies between 0 and 1 as shown in Figure 24. Moreover, 

Figure 25 illustrates the system failure PDF which is ( ) / ( ) /r kP t      . 

 

                 System failure CDF for the current simulation Figure 24:  
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We Know that we take tk and tC as two normal random variables where the value of tC 
corresponds to 1000 cycles (tC = critical value). After a reliability calculation using a Matlab 
version 2020 program, we deduce a value of )( kr tP  for each value of instant tk . Figure 26 

illustrates all the new prognostic model functions and proves all the mathematical derivations. 

We have computed and ploted for this set of )( kr tP all the CPP parameters and components and 

which are: Chf(tk), MChf(tk), DOK(tk), Pc(tk), Pm(tk)/i , D(tk), and )]([ krob tRULP . 
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           System failure PDF for the current simulation Figure 25:  
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We note from the figure that the DOK is maximum (DOK = 1) when absolute value of Chf which 
is MChf is minimum (MChf = 0) (points J & L), that means when the magnitude of the chaotic 
factor (MChf) diminishes our certain knowledge (DOK) grows. Subsequently, MChf begins to 
grow during the functioning due to the environment and intrinsic circumstances thus leading to a 
diminution in DOK until they both reach 0.5 at tk = Mediant = 258.7 (point K). The real cumulative 
failure probability rP and the real cumulative complementary survival probability Pm/i will meet
with DOK and MChf also at the point (258.7, 0.5) (point K). The point K’ is the point 
corresponding to K and which is (637, 0.5). K’ is the point where the degradation D(tk) and 

)]([ krob tRULP intersect. With the growth of tk, the Chf and MChf return to zero and the DOK
returns to 1 where we attain total damage (D = 1) and hence the total certain failure of the system
( rP = 1) (point L). At this last point the failure here is definite, Pr(tC) = 1 and RUL(tC) = tC – tC =
0 with Pc(tC) = 1, so the logical consequence of the value DOK = 1 ensues.

The Paradigm of Complex Probability and Prognostic Using FORM



 

    

 
    

 
   

   

 

 
 
 
 
 

We note that the point K corresponding to Median Modet t t   which is the median of the 

distribution is not at the middle of the simulation since the probability of failuredistribution 
evaluated by FORM is not symmetric. Therefore, the corresponding graphs are skewed to the 
right or positively skewed. 

 
CPP and FORM applied to prognostic. 
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Figure 26:  

6.1   The Complex Probability Cubes
 
In the first cube (Figure 27), the simulation of Chfand DOKas functions of each other and 

of the simulation cyclestime t can be seen. The line in cyan is the projection of Pc P

2
P(t) = DOK(t) –

Chf(t) = 1 = Pc(t) on the plane t = 0 cycles. This line starts at the point J (DOK = 1, Chf = 0) 

when t = 0 cycles, reaches the point (DOK = 0.5, Chf= –0.5) when t = Mediant =258.7 cycles, and 

returns at the end to J (DOK = 1, Chf= 0) when t = t RCR = 1000cycles. The other curves are the 
graphs of Chf(t)(pink, blue,green) andDOK(t)(red)in different planes. Notice that they all have a 

minimum at the point K (DOK = 0.5, Chf= –0.5, t = Mediant =258.7cycles). The point L 

corresponds to (DOK = 1, Chf= 0, t = tRC R = 1000 cycles). The three points J, K, L are similar to 
those in the previous figures. 
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Furthermore, at each instant tk, we can predict with certainty the remaining useful lifetime 
RUL(tk) in the complex probability set C with Pc preserved as equal to one through an unceasing
compensation between DOK and Chf. This compensation is from instant tk = 0 where D(tk) = 0 
until the instant of failure tC where D(tC) = 1. 
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Figure 27:  DOK and Chf in terms of t and of each other 

In the second cube (Figure 28), we can notice the simulation of the failure probability 
PRrR(t) and its complementary real probability P RmR/i(t) in terms of the simulation cycles time t. The 
line in cyan is the projection of Pc P

2
P(t) = PRr R(t) + P RmR/i(t) = 1 = Pc(t) on the plane t = 0 cycles. This 

line starts at the point (PRr R = 0, PRmR/i= 1) and ends at the point (PRr R = 1, PRmR/i = 0). The red curve 
represents PRrR(t) in the plane PRr R(t) =PRm R/i(t). This curve starts at the point J (PRr R = 0, PRm R/i= 1, t = 0 

cycles), reaches the point K (PRr R = 0.5, PRm R/i= 0.5, t = Mediant =258.7cycles), and gets at the end to L 

(P RrR = 1, PRmR/i= 0, t =tRC R = 1000 cycles). The blue curve represents P RmR/i(t) in the plane PRr R(t) 
+PRm R/i(t) = 1. Notice the importance of the point K which is the intersection of the red and blue 

curves at t = Mediant =258.7 cycles and when PRr R(t) =P Rm R/i(t) = 0.5.The three points J, K, L are 

similar to those in the previous figures. 
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      Chf : Chaotic factor
       Pc2 = DOK – Chf = 1 = Pc
       DOK : Degree of our knowledge
       Chf : Chaotic factor
       Chf : Chaotic factor
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Figure 28:  

In the third cube (Figure 29), we can notice the simulation of the complex random vector 
Z(t) in C as a function of the real failure probability P RrR(t) = Re(Z) in R and of its complementary 
imaginary probability PRmR(t) = i×Im(Z) in M , and this in terms of the simulation cycles time. The 
red curve represents PRrR(t) in the plane PRmR(t) = 0 and the blue curve represents PRm R(t) in the plane 
PRrR(t) = 0. The green curve represents the complex probability vector Z(t) = PRrR(t) + PRm R(t) = Re(Z) 
+ i×Im(Z) in the plane PRrR(t) =iPRm R(t) + 1. The curve of Z(t) starts at the point J (PRrR = 0, P Rm R= i, t = 
0 cycles) and ends at the point L (P RrR = 1, PRm R = 0, t = tRC R = 1000 cycles). The line in cyan is PRrR(0) 
=iPRmR(0) + 1 and it is the projection of the Z(t) curve on the complex probability plane whose 
equation is t = 0 cycles. This projected line starts at the point J (PRrR = 0, P RmR= i, t = 0 cycles) and 
ends at the point (PRr R = 1, PRmR = 0, t = 0 cycles). Notice the importance of the point K 

corresponding to t = Mediant =258.7 cycles and when PRrR = 0.5 and PRmR = 0.5i. The three points J, K, 

L are similar to those in the previous figures.  
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       Pm/i : Real Complementary Survival Probability
       Pr : Real Failure Probability
       Pc : Probability in the set C = Pr + Pm/i = 1
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                 The Complex Probability Vector Z in terms of t 
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Figure 29:  
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         Pr  : Real Failure Probability in the set R = Re(Z)
         Pm : Complementary Imaginary Survival Probability in the set M = i×Im(Z)      
         Z =  Pr + Pm : The Complex Probability Vector in the set C

The Paradigm of Complex Probability and Prognostic Using FORM



  

 

 
  

 
 
 
 
 
 
 

  
 

 
 

 

 

 
 

 

 

 

   

 
 

 

 

 

 

 

 

 

 
 

 

  

6.2  Flowchart of CPP Applied to Prognostic
 

The following flowchart summarizes all the explained procedures of the proposed 
complex probability prognostic model: 
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Calculate F(t) from FORM at each 
simulation time t

Calculate the real failure probability:

Prognostic

No

Yes

Plot all the functions for 
t = t0 , tC

D(t) < 1

Diagnostic/
Inspection

For each simulation time: 
t = t0 , tC

Apply FORM Procedure

Complex probability 
paradigm functions

Calculate the Degradation:

And

Calculate DOK:
DOK(t) = 1 – 2×Pr(t)×[1 – Pr(t)]

Calculate Chf and MChf:
Chf(t) = – 2×Pr(t)×[1 – Pr(t)]

MChf(t) = | Chf(t) |

Calculate: Pc2(t) =  DOK(t) – Chf(t)
                    

Calculate the real survival 
probability: Pm(t)/i = 1 – Pr(t)

Input initial parameters ( , , , , , )
of the Normal Distribution and for prognostic



 

 

 

 

  

 

  

 

 
   

 
 

 

 
      

 
  

 
  

 
 

 

 
 
 
 
 
 
 

 
   

 
 
 
 
 
 

 

               The Young modulus E in a material domain 
 
The novel prognostic model expressions for Young modulus are the following: 

 
The CDF (cumulative probability distribution function) F(E) of the random variable Eand which 
was calculated by FORM is equal to: 

0

0( ) ( ) ( ) ( ) ( )
kE E

k rob k rob r k
E E

F E P E E E P E P E 




        (26) 

And  
 

1( ) ( ) [ ( ) ( )]r k k rob k rob kP E F E P E E P E E        

-1

0 0

( )  ( )
k kE E E E

rob rob
E E E E

P E P E
 

 

 
   

 
   

1

1( ) ( )
k

k

E E

rob rob k k
E E

P E P E E E 







       

(27) 

         =   times the jump in D(E) from 1kE E   to kE E . (Figures 31 & 32) 

 
 = the simulation magnifying factor that depends on the simulation profile.  is equal to 1449.4 

in the case of Young modulus prognostic. 
 
Consequently, the recursive relation for degradation as a function of the failure probability 

( ) /rP E  is the following: 

1( ) ( ) ( ) /k k r kD E D E P E                                                 (28) 

1( ) ( ) ( ) /k k kD E D E F E                                                    (29) 

1( ) ( ) ( ) /k kD E D E                                                        (30) 
 
Thus, initially we have: 

F 

E L 

VII.   Application of the New Model to Young Modulus [15-28] [73-76]

Figure 30:  
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We apply now the novel prognostic model to the very well-known Young modulus. Let E be the 
Young modulus in a material bar domain (Figure 30) and we suppose that it follows a Normal 
Gaussian probability distribution. 
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1[ ( ) ( )]k kD E D Eψ −= × −



 
 
 
 

 
   

 
 

  
 
 
 
 
 
 

 

  
 

 

 

  

 

0 0( 0) ( ) 0r kP E E F E     

Moreover,
 

( )  ( ) ( ) / ( ) /  ( )r k k r k kP E f E P E f E        
 

Where /1 is a normalizing constant that is utilized to transform ( ) ( )r kP E    function to a 

probability density function with a total probability equal to one. /1  is a function of the 

simulation mode and conditions. Subsequently, we deduce that  ( )kf E  is the usual probability 

density function (PDF) for any simulation mode. Knowing that, from classical probability 
theory, we have continuously:  

0 0

 ( ) ( ) /  1 
k C k C

k k

E E E E

k r k
E E E E

f E P E 
 

 

    

This result is reasonable since ( ) /r kP E   is here a probability density function. 

 
Therefore, we can deduce that: 

0 0 0

( ) / ( ) / ( ) / 1.
k C k C k C

k k k

E E E E E E

r k k
E E E E E E

P E F E   
  

  

            (31) 

(Figures 31 & 32)  

Notice that:  

0 ( ) / 1r kP E   , 0 ( ) 1kF E  , and 0( 0) ( ) ( 1)k CD D E D    ,for everyEk: 0 EkEC 

and 

If 00 0 0 ( ) 0k r kE D D F P E         

if 1 1 ( ) 1k C C r kE E D D F P E        .

Furthermore, we have (Figure 34): 

( )k C kRUL E E E   and it corresponds to a degradation ( )kD E , 

And 

1 1( )k C kRUL E E E    and it corresponds to a degradation 1( )kD E  . 

 
This implies that: 

1

1

( ) [ ( ) ( )]

          { [ ( )] [ ( )]}

r k k k

C k C k

P E D E D E

D E RUL E D E RUL E








  

    
                                                             (32) 

 
Figures 31 to 34 illustrate the application of the new prognostic model to Young modulus. 
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This, since the degradation is flat near 0 and starts increasing and becoming more acute with Young
modulus E; hence, at EC, D is the greatest and is equal to 1. (Figures 32 & 33)
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Figure 31:  
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Pr, degradation, and the CDF step function 

 

 
Figure 31 shows the real failure probability PRrR(E) as a function of the random system 

degradation step CDF in terms of the simulation Young modulus E. 

 



  
 

 
 
 

 
   

 

 

  

 
  

 

 

  

  

   
 

  
 

   
 

 

 
 

 
  

  

 
 

 
 

 
   

 

 
Pr as a function of Degradation D(E)Figure 32:
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Figure 32 shows the real failure probability PRrR(E) as a function of the random system 

degradation in terms of the simulation Young modulus E. 



 

 

 

 

 

 

 

 
 

   
 
 

 

  

 

 

 

 

  

 
 
 Figure 33 shows the real failure probability Pr(E) and the random system degradation D(E) as 

functions of the simulationYoung modulus E. 
 

                  Degradation and Pr Figure 33:

 

 
 Degradation D(E) 

L(E) 

Pr , D, and RUL Figure 34:  
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Moreover, we have from FORM: 
 

( ) ( )k C k kG E E E RUL E                                              (33) 

 
where ( )kG E  is the limit state of lifetime. 

 

EC: is the fixed lifetime of the system which follows a normal probability distribution N (516, 1) 
Ek: is an arbitrary instant that varies from 0 to EC and which follows a normal probability 

distributionN  ,0 051k kE . E  

 

When ( )kG E is zero or negative then we have a case of EkEC that means that we have a 

system failure that cannot live until the instant Ek. In the other case where Ek<EC, the system can 
live above the instant Ek and we have a case of success. 
 

The reliability index  1 ( )r kP E    where ( )r kP E  is the cumulative distribution 

probability function and  is the normal cumulative distribution function. Hence, 1  is the 

inverse of  and 

( ) ( )r kP E       (34) 

 
The failure cumulative distribution functioncomputed by the FORM procedure is:  

( ) { ( ) 0} { } ( )r k rob k rob k CP E P G E P E E                                                                               (35) 

It corresponds in system prognostic to: { ( ) 0}rob kP RUL E   

 
Therefore, the survival cumulative distribution function computed by the FORM procedure is:  

{ ( ) 0} { } 1 ( ) ( ) / 1 ( )rob k rob k C r k m kP G E P E E P E P E i                                               (36) 

It corresponds in system prognostic to: { ( ) 0}rob kP RUL E   
 

In CPP, the real part of probability is taken here ( )r kP E . As we make the instant Ekvary 

between 0 and EC, then ( ) ( )r k kP E F E  varies between 0 and 1 as shown in Figures 35 and 36. 

Moreover, Figure 37 illustrates the system failure PDF which is ( ) / ( ) /r kP E      . 
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Figure 34 shows the real failure probability PRrR(E) as a function of the random system degradation 
D(E) and the random system RUL(E) in terms of the simulation Young modulus E.
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                 System failure CDF for the current simulation 
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Figure 36: 
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F(Ek) = Pr(Ek) = Prob(E  Ek) 
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Young Modulus E 
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                General system failure CDF Figure 35: 



 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

               System failure PDF for the current simulation Figure 37:  

 

vc 0.051E

E


  . 

 

We can infer from the simulations that the median of the distribution is 516 KsiMedianE E   and 

is denoted accordingly MdE . We know from classical statistical theory that it is the value that 

divides the distributioninto two equal parts. From the simulations we have the following results: 
 

[ ( 516 Ksi)] 0.5rob MdP E E     , and [( 516 Ksi) ] 0.5rob MdP E E     , 

 

And [ 663 Ksi] 0.7748robP E    , and [663 Ksi ] 0.2252robP E    , 

7. 1   Mathematical Analysis: A Numerical Example

As well 

[ 0 Ksi] 0robP E   . 
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Let E be the mean value of Young modulus E in the simulations and let Eσ be the standard 
deviation of E then the coefficient of variation in the simulations is:
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Moreover, 
2

1 1
( ) exp

22
E

EE

E E
dF f E dE dE



  
     
   

, which is the normal distribution corresponding 

to Young modulus E with mean equal to E and standard deviation equal to E . 

 
21

( ) exp
22

E

u
dF f u du du



 
    

 
, where 

E

E E
u




 , which is the standard normal 

distribution corresponding to Young modulus E with 0u   and 1u  . 

 Therefore, 

21
( ) exp [ ]

22

Eu

E rob E

u
u du P u u



 
    

 
 . 

 
Note that: 

 
2 21 1 1

exp exp 1
2 22 2EE

E E u
dF dE du

 

  

  

     
       
     

    

 
Now,in the real probability domain R we have: 
 

2663

[ ( 663)] ( 663)

1 1
                                        ( 663) exp

22

                                        0.7748

rob

E

r

EE

P E E F E

E E
P E dE

 





     

  
      

    



  

 
The correspondingcomplementary probability in the imaginary domain M is: 

 

 
2

663

( 663) [1 ( 663)] [ 663] 1 ( 663)

1 1
                                                     exp

22

                                                  

m r rob

EE E

P E i P E i P E i F E

E E
i dE

 





           

  
     

    


    0.2252i 
 

 

If we compute the norm of the complex number or vector r mZ = P + P  we have: 

2 2 2 2 2( / ) (1 ) 1 2 ( 1) 1 2 (1 );r m r r r r r rZ = P P i P P P P P P           
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This implies that: 

2 2 2 22

2 2 2 2 2 2

1 2 (1 ) 2 (1 ) 2 [ (1 )] 2

 ( / ) 2 ( / ) 2 ( / ) ( / ) 1

r r r r r r r m

r m r m r m r m r m

Z P P Z i P P Z i P i P Z iP P

P P i iP P P P i P P i P P i Pc Pc

             

          
 

since 2 1
1i i

i
      

 
We note that: 

( ) ( ) ( ) ( )
E

E r m E E

E

Z P E P E f u du i f u du




     , written for short 
E

E

i




   

and 
516

516

( 516) ( 516) ( ) ( ) 0.5 0.5
EMd

Md

EMd

E r Md m Md E EZ P E P E f u du i f u du i








            

and 
663

663

663 ( 663) ( 663) ( ) ( ) 0.7748 0.2252
E

E

E r m E EZ P E P E f u du i f u du i










           . 

 
We have also: 

2

2 2

2 2 2[ ( ) ( ) / ] 1 1
E E

E
E r m

E

i

Pc P E P E i
i



 

  

 
 

                    
 
 


     

 
And the chaotic factor is: 

2 ( ) ( ) 2 2 1
E E E

E r m

E

Chf i P E P E i i


  

 
            

 
    , where: 

0EChf   if 
, hence 0

, hence 1

r

r

E P =

E P

  


  

 

 
Moreover, the Magnitude of the chaotic factor is: 

2 ( ) ( ) 2 2 1

            2 1

E E E

E E r m

E

E E

MChf Chf i P E P E i i


  

 

 
             

 

 
    

 

   

 

 

where: 

0EMChf   if 
, hence 0

, hence 1

r

r

E P =

E P

  


  

 

 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

47 © 2020 London Journals Press Volume 20 | Issue 4 | Compilation 1.0

The Paradigm of Complex Probability and Prognostic Using FORM



 
 

  
 

  

 

  

  

  
  

   
  

    
 

  

 
 

 
 

Additionally, 
2 2 2 2

2 2 2( ) [ ( ) / ] 1
E E E

E E r m

E

DOK Z P E P E i


  

       
              

       
    , where: 

1EDOK   if 
, hence 0

, hence 1

r

r

E P =

E P

  


  

 

 
Consequently, we state that: 

 
22 2 . ( ). ( )E E r mPc Z i P E P E  Degree of our knowledge – Chaotic factor = 1. 

 

And if
2

0 1E EChf Z DOK    , in other words, if the chaotic factor is zero then the degree 

of our knowledge is 1 = 100%. 
 

In addition, we say that: 

2
EPc Degree of our knowledge +Magnitude of the Chaotic factor = 1. 

 

And if 
2

0 1E EMChf Z DOK    , in other words, if the magnitude of the chaotic factor is 

zero then the degree of our knowledge is 1 = 100%. 
 

Numerically, we write: 
 

2 2 2
516 516

516 516

(0.5) (0.5) 0.25 0.25 0.5

0.707106781 0,

Md Md

Md Md

E E

E E

Z DOK

Z Chf

 

 

     

   
 

hence, 516 0.5 1 0.5,
MdEChf       

and 516 516 0.5 0.5
Md MdE EMChf Chf     . 

 
Additionally, 

2 2 2
663

2

663 663

(0.7748) (0.2252) 0.60031504 0.05071504 0.65103008

1
0.80686435 0,    Notice that:  1

2

E

E E E

Z

Z Chf Z DOK



 

    

      
 

Hence, 663

1
0.65103008 1 0.34896992,    Notice that: 0

2
E EChf Chf         

and 663 663

1
0.34896992 0.34896992,   Notice that: 0

2
E E EMChf Chf MChf        

 
Accordingly, we can say that: 
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The degree of our knowledge 
2

663 663 0.65103008E EDOK Z   , the chaotic factor 

663 0.34896992EChf    , and the magnitude of the chaotic factor 663 0.34896992EMChf   . 

 
What is interesting here is thus we have quantified both the degree of our knowledge and the 
chaotic factor of the stochastic event as well as the corresponding magnitude of the chaotic 
factor. 

 
Notice that:   

663EDOK   663EChf    0.65103008  ( 0.34896992)   = 0.65103008  0.34896992 6631 EPc    

and 663EDOK  + 663EMChf  0.65103008  0.34896992 6631 EPc    

 
Also 

516MdEDOK   516MdEChf    0.5  ( 0.5)   = 0.5  0.5 5161
MdEPc    

and 516MdEDOK  + 516MdEMChf   0.5  0.5 5161
MdEPc    

 
Conversely, if we assume that:  

2 2 20  0 1 ( ) [ ( ) / ] 1E E E E r mChf MChf Z DOK P E P E i          

( ) 0

2 ( )[1 ( )] 0 or or

( ) 1

r

r r

r

P E E

P E P E

P E E

   
 

     
   

 

 

And 
21 1 1

if 516 Ksi
2 2 2

E E E E MdChf  MChf Z DOK E E          , 

And 

2
if 0.34896992 0.34896992 0.65103008

663 Ksi.

E E E EChf  MChf Z DOK

E

      

 
 

 

Now if E increases to become 1000 Ksi then both 
2

EZ DOK  and EChf  increase, and 

EMChf  decreases. 

 
Therefore, we can infer that: 

 

lim ( ) 0E
E

Chf


 , lim ( ) 0E
E

MChf


 , and  2
lim 1E E

E
Z DOK


   

 
where we have always: 
 

2 22 1,E E E E E E E E EPc Z Chf DOK Chf Z MChf DOK MChf          

 
for every value of E  in the real set of numbers. 
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Figure 38 illustrates all the novel prognostic model functions when applied to Young modulus 
and proves all the mathematical derivations. We have computed and ploted for this set of ( )r kP E
all the CPP parameters and components and which are: Chf(Ek), MChf(Ek), DOK(Ek), Pc(Ek), 
Pm(Ek)/i , D(Ek), and [ ( )]rob kP RUL E .

We note from the figure that the DOK is maximum (DOK = 1) when absolute value of Chf which 
is MChf is minimum (MChf = 0) (points J & L), that means when the magnitude of the chaotic 
factor (MChf) diminishes our certain knowledge (DOK) grows. Afterward, MChf starts to grow
during the functioning due to the environment and intrinsic conditions thus leading to a diminution
in DOK until they both reach 0.5 at Ek = MdE = 516 (point K). The real cumulative failure 
probability rP and the real cumulative complementary survival probability Pm/i will meet with 
DOK and MChf also at the point (516, 0.5) (point K). The point K’ is the point corresponding to 
K and which is (1273, 0.5). K’ is the point where the degradation D(Ek) and [ ( )]rob kP RUL E meet. 
With the increase of Ek, the Chf and MChf return to zero and the DOK returns to 1 where we reach 
total damage (D = 1) and hence the total certain failure of the system ( rP = 1) (point L). At this 
last point the failure here is definite, Pr(EC = 2000) = 1 and RUL(EC = 2000) = EC – EC = 0 with 
Pc(EC = 2000) = 1, so the logical consequence of the value DOK = 1 ensues.

We note that the point K corresponding to MdE ModeE E≠ ≠ is not at the middle of the simulation
since the probability of failure distribution evaluated by FORM is not symmetric. Therefore, the
corresponding graphs are skewed to the right or positively skewed.

Furthermore, at each instant Ek, we can predict the remaining useful lifetime RUL(Ek) with
certainty in the complex probability set C with Pc preserved as equal to one through an unceasing
compensation between DOK and Chf. This compensation is from instant Ek = 0 where D(Ek) = 0 
until the failure instant EC where D(EC) = 1. 
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CPP and FORM applied to prognostic and to Young modulus. 
 

 

Figure 38: 

7.2 The Complex Probability Cubes
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In the first cube (Figure 39), the simulation of Chf and DOK as functions of each other and 
of the simulation of Young modulus E can be seen. The line in cyan is the projection of PcP

2
P(E) =

DOK(E) – Chf(E) = 1 = Pc(E) on the plane E = 0 Ksi. This line starts at the point J (DOK = 1, Chf
= 0) when E = 0 Ksi, reaches the point (DOK = 0.5, Chf = –0.5) when E = MdE = 516 Ksi, and 
returns at the end to J (DOK = 1, Chf = 0) when E = ERCR = 2000 Ksi. The other curves are the 
graphs of Chf(E) (pink, blue, green) and DOK(E) (red) in different planes. Notice that they all have 
a minimum at the point K (DOK = 0.5, Chf = –0.5, E = MdE = 516 Ksi). The point L corresponds 
to (DOK = 1, Chf = 0, E = ERCR = 2000 Ksi). The three points J, K, L are similar to those in the 
previous figures.
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DOK and Chf in terms of E and of each other 
 
In the second cube (Figure 40), we can notice the simulation of the failure probability 

PRrR(E) and its complementary real probability P Rm R/i(E) in terms of the simulation of Young 
modulusE. The line in cyan is the projection of Pc P

2
P(E) = P RrR(E) + PRm R/i(E) = 1 = Pc(E) on the 

plane E = 0Ksi. This line starts at the point (PRr R = 0, PRm R/i= 1) and ends at the point (PRrR = 1, PRm R/i = 
0). The red curve represents PRrR(E) in the plane P RrR(E) =P Rm R/i(E). This curve starts at the point J (PRrR 

= 0, PRm R/i= 1, E = 0Ksi), reaches the point K (PRr R = 0.5, P RmR/i= 0.5, E= MdE =516 Ksi), and gets at 

the end to L (PRrR = 1, P Rm R/i= 0, E =ERCR = 2000 Ksi). The blue curve represents PRm R/i(E) in the plane 
PRrR(E) +PRm R/i(E) = 1. Notice now the importance of the point K which is the intersection of the red 

and blue curves at E = MdE =516 Ksi and when PRrR(E) =PRmR/i(E) = 0.5.The three points J, K, L are 

similar to those in the previous figures. 
 

Figure 39: 
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      Chf : Chaotic factor
       Pc2 = DOK – Chf = 1 = Pc
       DOK : Degree of our knowledge
       Chf : Chaotic factor
       Chf : Chaotic factor
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In the third cube (Figure 41), we can notice the simulation of the complex random vector Z(E) 

in C as a function of the real failure probability PRrR(E) = Re(Z) in R and of its complementary 
imaginary probability P RmR(E) = i×Im(Z) in M , and this in terms of the simulation of Young 
modulus E. The red curve represents P RrR(E) in the plane PRm R(E) = 0 and the blue curve represents 
PRm R(E) in the plane PRrR(E) = 0. The green curve represents the complex probability vector Z(E) = 
PRrR(E) + PRm R(E) = Re(Z) + i×Im(Z) in the plane PRrR(E) =iPRmR(E) + 1. The curve of Z(E) starts at the 
point J (PRrR = 0, PRm R= i, E = 0 Ksi) and ends at the point L (P RrR = 1, PRm R = 0, E = E RC R = 2000 Ksi). 
The line in cyan is PRr R(0) =iPRmR(0) + 1 and it is the projection of the Z(E) curve on the complex 
probability plane whose equation is E = 0 Ksi. This projected line starts at the point J (PRr R = 
0,PRmR= i, E = 0 Ksi) and ends at the point (P RrR = 1, PRm R = 0, E = 0 Ksi). Notice the importance of 

the point K corresponding to E = MdE =516Ksi and when PRr R = 0.5 and PRm R = 0.5i. The three 

points J, K, L are similar to those in the previous figures. 

 
Pr and Pm/iin terms of E and of each other Figure 40: 
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       Pm/i : Real Complementary Survival Probability
       Pr : Real Failure Probability
       Pc : Probability in the set C = Pr + Pm/i = 1
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                  The Complex Probability Vector Z in terms of E 

 

Figure 41: L
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         Pr  : Real Failure Probability in the set R = Re(Z)
         Pm : Complementary Imaginary Survival Probability in the set M = i×Im(Z)      
         Z =  Pr + Pm : The Complex Probability Vector in the set C

The Paradigm of Complex Probability and Prognostic Using FORM



 

 
 

   

 

  

 

  

 

 

 
 

   

 
 

  
 

 

 
 

  
  

 

 

 
 

  
 

  
 

  
 

The following flowchart summarizes all the explained procedures of the proposed 
complex probability prognostic model: 

7.3 Flowchart of CPP Applied to Young Modulus Prognostic
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Calculate F(E) from FORM at each 
simulation cycle of Young modulus E

Calculate the real failure probability:

Prognostic

No

Yes

Plot all the functions for 
E = E0 , EC

D(E) < 1

Diagnostic/
Inspection

For each simulation cycle: 
E = E0 , EC

Apply FORM Procedure

Complex probability 
paradigm functions

Calculate the Degradation:

And

Calculate DOK:
DOK(E) = 1 – 2×Pr(E)×[1 – Pr(E)]

Calculate Chf and MChf:
Chf(E) = – 2×Pr(E)×[1 – Pr(E)]

MChf(E) = | Chf(E) |

Calculate: Pc2(E) =  DOK(E) – Chf(E)
                  

Calculate the real survival 
probability:  Pm(E)/i = 1 – Pr(E)

Input initial parameters ( , , , , , ) 
of the Normal Distribution and for prognostic
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VIII. Final Analysis: Explanation and the General Prognostic Equations

Firstly, probability theory embodied by the CDF F(t) calculated and made available by 
FORM was connected to prognostic materialized by the degradation D(t) by supposing that 

1( ) [ ( ) ( )] ( )k k kF t D t D tψ β−= × − = Φ − and the good reason for this postulation was presented. 
Subsequently, the deterministic D(t) quantified from deterministic prognostic converts to a 
nondeterministic function. Consequently, the deterministic and discrete variable of simulation 
cycles time t converts to a stochastic and discrete variable. Thus, the resultant of all the factors 
influencing the system which was deterministic converts to a stochastic resultant because D(t) 
quantifies now the stochastic degradation of the system in terms of the random cycles time t. 
Accordingly, all the parameters exact values of the D(t) expression become now mean values of 
the stochastic factors influencing the system and are embodied by PDFs as functions of the 
stochastic variable of simulation cycles time t. As a matter of fact, this is the real-world case where 
randomness is omnipresent in one way or another. What we consider and judge as a deterministic 
phenomenon is nothing in reality but a simplification and an approximation of an actual chaotic 
and stochastic phenomenon and experiment due to the impact of a huge number of 
nondeterministic and deterministic forces and factors (a good illustration is a lottery machine).

Subsequently, an updated follow-up of the stochastic degradation behavior with time or cycle 
number, and which is subject to chaotic and non-chaotic effects, is done by the quantity jkr tP ψ/)(
due to its definition that embodies the jumps in the stochastic degradation D(t). Henceforth,

)()]()([)( 1 βψ −Φ=−×= −kkkr tDtDtP ,

In this section, all the obtained data and achieved simulations will be interpreted, a final 
analysis will be done, and the novel general prognostic equations will be presented. A detailed 
discussion of all the previous figures will be executed to understand the results.

Referring to the theory of classical probability, this converts ψβψ /)(/)( −Φ=kr tP to become the 

system failure probability at t = tk, with 1/)(0 ≤≤ ψkr tP and ∑∑
=

=

=

=

=−Φ=
CC tt

tt

tt

tt
r tP

00

/)(/)( ψβψ [sum of 

all the jumps in D from t0 to tC] = DC = 1, similar to any probability density function (PDF). 

Additionally, in the simulations a constant and extremely minor increases in t have been considered
and which yield extremely minor increases in D and consequently in ψ/)( kr tP . So, we have 
multiplied those extremely minor jumps in D by a simulation magnifying factor that we called     
ψ . Note that ψ/1 is a normalizing constant that is utilized to transform )( kr tP function to a 
probability density function with a total probability equal to one. ψ/1 is a function of the 
simulation mode and conditions and it depends on the parameters in the degradation equation and 
in the FORM algorithm. We have from the simulations that =ψ 724.3113 and =ψ 1449.4 for 
Young modulus. So we get: if t tends to t0 = 0 then )( kr tP tends to 0, and if t tends to tC then )( kr tP

tends to 1, so 1)(0 ≤≤ kr tP and 
0 0

0( ) ( ) ( ) (1 0)
C Ct t t t

r C
t t t t

P t D Dβ ψ ψ ψ
= =

= =

= Φ − = × − = × − =∑ ∑ as

)()( β−Φ=kr tP is a CDF since )( kr tP is cumulative, it is ψ times the probability of failure at t = 
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Therefore, ( ) (0 )k rob kF t P t t   = Prob(t = 0 or t = 1 or t = 2 or … or t = tk) = sum of all  

probabilities of failure between 0 and tk = probability that failure will happen somewhere 

between 0 and tk. So, if tk = 0 then ( 0) 0robP t   = probability that failure will happen at t = 0 

and before. If tk = tC then (0 ) 1rob CP t t   = sum of all probabilities of failure between 0 and tC 

= probability that failure will happen somewhere between 0 and tC.  If tk>tC then ( ) 1rob CP t t  = 

probability that failure will happen beyond tC. We can observe that the probability of failure 

grows with the growth of the cycles time tk until at the end it becomes equal to 1 when Ck tt  .  

Thus, If 00 t  and 0)( 0 tD  therefore: 

0 0 0

(0 ) ( ) ( ) / ( ) /
k k kt t t t t t

rob k rob r
t t t

P t t P t P t   
  

  

          

This implies that:
0 0 0

(0 ) ( ) ( ) / ( ) / / 1
C C Ct t t t t t

rob C rob r
t t t

P t t P t P t     
  

  

            and 

0 0

0 0

( 0) ( ) ( ) / (0) / 0 / 0
t t

rob rob r r
t t

P t P t P t P  
 

 

        

If 00 t  and 0)( 0 tD then the prognostic equation in the new model is: 

0 0 0

0( ) ( ) ( ) / ( ) /
k k kt t t t t t

rob k rob r
t t t t t t

P t t t P t P t   
  

  

                      (37) 

with 00 /)( DtPr  . 

 /)()(/)()()( 11   kkrkk tDtPtDtD  ; 0:  k k Ct t t t   .                         (38) 

 
In the general prognostic case, if we possess the PDFof system failure then we can include it in 
the equations (37) and (38) above and computedegradation at any instant tk and vice versa. Then, 
all the other model CPP functions (Chf, MChf, DOK, Z, Pr, Pm, Pm/i, Pc) will follow. This would 
be our new prognostic paradigm general equations: 

0 0

0( ) ( ) ( )
k kt t t t

rob k rob failure
t t t t

P t t t P t PDF t
 

 

                    (39) 

And the recursive relation: 

)()()( 1 kfailurekk tPDFtDtD                                 (40) 

with 00 )( DtPDFfailure  . 

 
It is crucial to indicate here that the PDFfailure function of the system failure has all the 

mathematical characteristics and all the possible features of a probability density function 
whether it is a continuous or a discrete stochastic function and it can follow any imaginable 
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tk. Hence, in the simulations, )( kr tP is the cumulative probability that the system failure occurs at 
t = tk and is used accordingly to compute all the CPP parameters.

Moreover, since )]()([)( 1−−= kkkr tDtDtP ψ , this leads to the following recursive relation:                                           
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probability distribution in condition only that it characterizes the failure function and the random 
degradation of the studied system whether it is a petrochemical pipe in the buried, unburied, or 
offshore case, or a vehicle suspension system in engineering, or any nondeterministic system 
under the effect of randomness and chaos. In fact, the function PDFfailure inherits all the attributes 
and features of the failure system function and of the nondeterministic degradation. 

 

)]}()([1)]}{()([{2             

)](1)[(2/)()(2)(

11  



kkkk

kmkrk

tDtDtDtD

itPtPtChf




    (41) 

)]}()([1)]}{()([{2                

)](1)[(2)()(

11  



kkkk

kk

tDtDtDtD

tChftMChf




    (42)  
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Furthermore, by applying CPP to the system prognostic, and in all the simulations, we 
were successful in the original prognostic model to quantify in R (our real laboratory) both our 
chaos embodied by Chf and MChf and our certain knowledge embodied by DOK. These three 
parameters of CPP are evaluated and caused by the resultant of all the non-random (deterministic) 
and random (nondeterministic) aspects influencing the system. Knowing that, in the novel 
paradigm, the factors resultant effect on RUL and D is materialized by the jumps in their curves 
and is accordingly expressed and concretized in R by Pr and in M by Pm. As it was defined in 
CPP, M is an imaginary probability extension of the real probability set R and the complex 
probability set C is the sum of both probability sets; thus, C = R + M. Because Pm = i(1 – Pr) 
therefore it is the complementary probability of Pr in M. Hence, if Pr is identified as the failure 
probability of the system in R at the simulation cycles time t = tk, then Pm is identified as the 
corresponding probability in the set M that the system failure will not happen at the same 
simulation cycles time t = tk. So, Pm is the associated probability in the set M of the system survival 
at t = tk. It follows that, Pm/i = 1 – Pr is the associated probability but in the set R of the system 
survival at the same simulation cycles time. Accordingly, we know that the sum in R of both 
complementary probabilities is surely 1 from classical probability theory. This sum is nothing but 
Pc which is equal to Pr + Pm/i = Pr + (1 – Pr) = 1 always. The sum in C of both complementary 
probabilities is the complex random number and vector Z which is equal to Pr + Pm = Pr +               
i(1 – Pr). And as the complex probability cubes show and illustrate, we realize that Z is the sum in 
C of the real probability of failure and of the imaginary probability of survival in the complex 
probability plane that has the equation: Pr(t) = iPm(t) + 1 for :  0 Ct t t∀ ≤ ≤ , :  0 1r rP P∀ ≤ ≤ , 

:  0m mP P i∀ ≤ ≤ . What is noteworthy is that the square of the norm of Z which is 2Z is nothing 
but DOK, as it was proved in CPP and in the new model. Moreover, since MChf = –2iPrPm = 
2PrPm/i, therefore it is twice the product in R of both the probability of failure and the probability 
of survival and it embodies the magnitude of chaos since it is always 0 or positive. All the 
simulations show and prove all these facts.

From all the above we can conclude that since D(t) is stochastic, the factors resultant is random, 
the jumps in D are the simulations failure probabilities )( kr tP , then we are dealing with a random 
experiment, thus the natural appearance of Chf, MChf, DOK, Z, and hence Pc. So, we get in the 
simulations:
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)]}()([1)]}{()([{21               

)](1)[(21/)()(21)(

11  



kkkk

kmkrk

tDtDtDtD

itPtPtDOK




(43)  

)]}()([1{)]()([)](1[)()()()( 11   kkkkkmkrk tDtDitDtDitPtPtZ  (44) 

1)()()()()(2  kkkkk tMChftDOKtChftDOKtPc , for every tk: Ck tt 0 .                 (45) 
 
Furthermore, in the novel paradigm we have: 

kCk tttRUL )( . 
 

Note that, since t and D are random then RUL is also a random function of t. Thus, this will yield 
in the set R: 
 

)]([ krob tRULP = Prob (the system will survive for Ck ttt  )    

                          = 1 – Prob (the system will fail for ktt  ) 

                          = 1 – )( ktD

(46) 

 
Thenceforth, we get continuously: 1)()]([  kkrob tDtRULP  everywhere. 

 

This implies that: 0[ ( 0)] 1 ( 0) 1 1 0 1rob k kP RUL t D t D          

And                      0111)(1)]([  CCkCkrob DttDttRULP  
 

Henceforth, we attain a general and an original prognostic equation for RUL. In fact, if 00 t  

and 0)( 0 tD therefore: 

 

)(1                        

/)(     with ;/)(1/)(1                        

):(1):()]([

0 0

00

0
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tt

tt

tt

rr

krobCkrobkrob

tD

DtPtP

tttFailurePtttSurvivalPtRULP

k k







 








                           (47) 








 


C

k

C

k

tt

tt

tt

tt

r tP
11

/)(/)(                                                      (48) 

00 )(     with ; )(1
0

DtPDFtPDF failure

tt

tt

failure

k

 




                                  (49) 



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
C

k

tt

tt

failure tPDF
1

)( (50) 

for any mode of simulation profile.  
 
Moreover, from equations (38), (39), and (40) and for any mode of simulation profile we have 
the following recursive relations: 
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    /)()(1/)()(1)(1)]([ 11   kkrkkkrob tDtPtDtDtRULP                                     (51) 

                                                              (52) 

 /)()]([11 1 krkrob tPtRULP   (53) 

                                                 (54) 

/)()]([ 1 krkrob tPtRULP             (55)   

 /)()]([ 1  krob tRULP                                      (56) 

)()]([ 1 kfailurekrob tPDFtRULP                            (57) 

where  )(1)]([ 11   kkrob tDtRULP .  

 

IX. Conclusion
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{ }ψβ /)()]([11 1 −Φ+−−= −krob tRULP

{ })()(1 1 kfailurek tPDFtD +−= −

In this paper I applied the theory of Extended Kolmogorov Axioms to Prognostic based on
Reliability. I used for this purpose the very well-known First-Order Reliability Method or FORM
analysis and procedure. Consequently, I established a tight link between the new theory
degradation or the remaining useful lifetime and reliability. Hence, I developed the theory of 
"Complex Probability" beyond the scope of my previous fourteen papers on this topic. 

In the ideal situation, if all the factors are 100% deterministic then we have in R: the probability 
of failure for Ck tt < is 0 and is 1 for Ck tt ≥ , accordingly the probability of system survival for 

Ck tt < is 1 and is 0 for Ck tt ≥ , since certain failure will happen only at Ck tt = . So, degradation is 
determined surely everywhere in R and its random function is replaced by a deterministic curve. 
Therefore, chaos is null and hence Chf = MChf = 0 and DOK = 1 always for all Ck tt ≤≤0 . Thus,

1)]([ =< Ckrob ttRULP and 0)]([ =≥ Ckrob ttRULP .

Furthermore, at each instant t in the original prognostic paradigm, the stochastic RUL(t) and D(t) 
are predicted with certitude in the complex probability set C with Pc2 = DOK – Chf = DOK + MChf
preserved as equal to 1 through a permanent compensation between Chf and DOK. This 
compensation is from the instant t = 0 where D(t) = D0 = 0 until the instant of failure tC where D(tC) 
= 1. Furthermore, we can realize that DOK does not comprise any uncertain knowledge (with a 
probability less than 100%), it is the measure of our certain knowledge (probability = 100%) about 
the expected event. We can understand that we have eliminated and subtracted in the equation 
above all the random factors and chaos (Chf) from our random experiment when computing Pc2, 
thus no chaos exists in C, it is only present (if it does) in R; consequently, this has led to a 100% 
deterministic outcome and experiment in C since the probability Pc is constantly equal to one. This 
is one of the advantages of extending R to M and therefore of conducting random experiments in
the set C = R + M. Thus, in the original prognostic paradigm, our knowledge of all the indicators 
and parameters (RUL, Prob, D, etc.) is totally predictable, always perfect, and constantly complete 
because Pc = 1 permanently, independently of any random factors or any simulation profile.

The Paradigm of Complex Probability and Prognostic Using FORM
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As it was proved and illustrated, when the degradation index is 0 or 1 and correspondingly the 
RUL is tC or 0 then the degree of our knowledge (DOK) is one and the chaotic factor (Chf and 
MChf) is 0 since the state of the system is totally known. During the process of degradation               
(0 < D < 1) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. Notice that during the 
whole process of degradation we have Pc2 = DOK – Chf = DOK + MChf = 1 = Pc, that means that 
the phenomenon which seems to be random and stochastic in R is now deterministic and certain 
in C = R + M, and this after adding to R the contributions of M and hence after subtracting the 
chaotic factor from the degree of our knowledge. Moreover, for each value of an instant tk or Ek, I 
have determined their corresponding probability of survival or of the remaining useful lifetime 
RUL(tk) = tC – tk or RUL(Ek) = EC – Ek. In other words, at each instant tk or Ek, RUL(tk) or RUL(Ek) 
are certainly predicted in the complex set C with Pc preserved as equal to one through an incessant
compensation between DOK and Chf. This compensation is from instant tk = 0 where D(tk) = 0 
until the failure instant tC where D(tC) = 1. And this compensation is also from Ek = 0 where D(Ek)
= 0 until failure at EC where D(EC) = 1. Furthermore, using all these graphs illustrated throughout 
the whole paper, we can materialize and illustrate both the system chaos (Chf and MChf) and the 
system certain knowledge (DOK and Pc). Additionally, an application to Young modulus E was 
successfully done here and proves the success of the entire novel prognostic paradigm. This is 
certainly wonderful, very fruitful, and fascinating and shows once again the benefits of extending 
the axioms of Kolmogorov and hence the benefits and novelty of this innovative field in applied 
and in pure mathematics that can be called verily: "The Complex Probability Paradigm".
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As a prospective and future challenges and research, we intend to more develop the novel 
conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for 
other stochastic phenomena as in the classical theory of probability and in stochastic processes. 
Additionally, we will implement CPP to other topics in the field of prognostic in engineering and 
also to the problems of random walk which have huge consequences when applied to economics, 
to chemistry, to physics, to pure and applied mathematics.
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