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A Mersenne number Mx is a number that is one less than a power of two

Mx = 2x − 1.

A Mersenne prime is a Mersenne number that is prime.

The first few Mersenne primes are:

3, 7, 31, 127, 8191, 131071, 524287, 2147483647, 2305843009213693951,

618970019642690137449562111,. . . (A000668 in the OEIS).

The first few exponents x that give Mersenne primes are:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, . . . (A000043 in the OEIS).

Mersenne primes are named after Marin Mersenne, a French Minim friar

who studied them in the early 17th century.

Many great mathematicians studied Mersenne primes and left many in-

teresting stories. We do not repeat those stories [13].

Euclid proved that if 2p− 1 is prime, then 2p−1 (2p− 1) is an even perfect

number. Euler proved that, conversely, all even perfect numbers have this

form [1]. So that the search for Mersenne primes is also the search for even

perfect numbers. This is well known as the Euclid–Euler theorem.

On December 21, 2018, it was announced that The Great Internet Mersenne

Prime Search (GIMPS) discovered the largest known prime number, the

51-th Mersenne prime, 2282589933 − 1, having 24862048 digits. A comput-
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Mathematicians believe that the set of Mersenne primes is infinite. “But

we are still missing a proof that this guess is true. We are still waiting for

a modern day Euclid to prove that Mersenne’s primes never run dry. Or

perhaps this far-off peak is just a mathematical mirage.” in “The music of

the primes” the mathematician Marcus du Sautoy said[13].

Mersenne primes [2], [3], and made a quantitative variant formula based on

the heuristics model of primes. The number of Mersenne primes up to x is

eγ × log log(x)/ log(2).

It is also not known whether infinitely many Mersenne numbers with

prime exponents are composite.

The author had published that there are infinitely many Mersenne com-

posite numbers with prime exponents by the recursive sieve method [9] [10].

In this paper, we prove that there are infinitely many Mersenne primes

by an interaction between proof and algorithm, like the proof of Chinese

remainder theorem.

In section 2, we repeat a sifting process of primes and obtain the recursive

formula for primes pi. By slightly refining the sifting process of primes, we

design a recursive sieve for Mersenne primes.

In section 3, we prove Mersenne prime conjecture based on order topo-

logical theory for the sifting process.

Within the framework of recursion theory, we reformulate Eratosthenes

sieve method and invent recursive sieve method, which is a modulo algo-

rithm on sets of natural numbers

For expressing this modulo algorithm by well formed formulas, we need

to extend both basic operations addition and multiplication + ,× into finite

sets of natural numbers, and introduce several definitions and notation.

We use small letters a, x, t to denote natural numbers and capital letters

A,X, T to denote sets of natural numbers except for Mx.

For arbitrary both finite sets of natural numbers A,B we write

A = 〈a1, a2, . . . , ai, . . . , an〉, a1 < a2 < · · · < ai < · · · < an,

B = 〈b1, b2, . . . , bj, . . . , bm〉, b1 < b2 < · · · < bj < · · · < bm.

er volunteered by Patrick Laroche from Ocala, Florida, made the find on

December 7, 2018.[4].

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

24 Volume 20 | Issue 2 | Compilation 1.0  © 2020 London Journals Press

There are Infinitely Many Mersenne Primes 

Lenstra--Pomerance--Wagstaff conjectured that there are infinitely many



 
 

 
 

 
 

 
 

 
 
 

 
 

 
 

 
 

  
 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 

We define

A+B = 〈a1 + b1, a2 + b1, . . . , ai + bj . . . , an−1 + bm, an + bm〉,

AB = 〈a1b1, a2b1, . . . , aibj . . . , an−1bm, anbm〉.
Example:

〈1, 5〉+ 〈0, 6, 12, 18, 24〉 = 〈1, 5, 7, 11, 13, 17, 19, 23, 25, 29〉,

〈6〉〈0, 1, 2, 3, 4〉 = 〈0, 6, 12, 18, 24〉.

For the empty set ∅ we define ∅+B = ∅ and ∅B = ∅.
We write A \B for the set difference of A and B.

Let

X ≡ A = 〈a1, a2, . . . , ai, . . . , an〉 mod a

be several residue classes mod a.

If gcd(a, b) = 1, we define the solution of the system of congruences

X ≡ A = 〈a1, a2, . . . , ai, . . . , an〉 mod a,

X ≡ B = 〈b1, b2, . . . , bj, . . . , bm〉 mod b

to be

X ≡ D = 〈d11, d21, . . . , dij, . . . , dn−1m, dnm〉 mod ab,

where x ≡ dij mod ab is the solution of the system of congruences

x ≡ ai mod a,

x ≡ bj mod b.

The solution X ≡ D mod ab is computable and unique by the Chinese

remainder theorem.

For example, X ≡ D = 〈5, 25〉 mod 30 is the solution of the system of

congruences

X ≡ 〈1, 5〉 mod 6,

X ≡ 〈0〉 mod 5.

We known that the residue class ai mod a is the set of natural numbers

{x : x ≡ ai mod a}, several residue classes A mod a is the union of several

sets. Thus we may write the relation x ∈ A mod a and set operation B∪(A

mod a).

Except extending + ,× into finite sets of natural numbers, we continue

the traditional interpretation of the formal language 0, 1,+,×,∈. The reader

who is familiar with model theory may know, we have founded a new model

or structure of a second-order arithmetic by a two-sorted logic

〈P (N), N,+,×, 0, 1,∈〉,
and a formal system

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

25 © 2020 London Journals Press Volume 20 | Issue 3 | Compilation 1.0

There are Infinitely Many Mersenne Primes 



 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 
 

 
 

    
 

〈P (N), N,+,×, 0, 1,∈〉 |= PA ∪ ZF,

where N is the set of all natural numbers, and P (N) is the power set of N ;

PA is the Peano theory, and ZF is the set theory.

We denote this model by P (N).

The second-order language 〈0, 1,+,×,∈〉 has stronger expressive power.

The second-order formal system P (N) has some exotic mathematical struc-

tures in terms of sets of natural numbers; the first order formal system has

no such structures.

Traditional recursion theory discusses functions, their inputs and outputs

are natural numbers. We have computed out 51 Mersenne primes, but the

evidence does not provide theoretical information about infinitude.

In the second-order arithmetics P (N ), we may construct recursive func-

tions on sets of natural numbers by arithmetical operations +,× and set-

theoretical operations ∪,∩, \, their inputs and outputs are sets of natural

numbers. Then we obtain a sequence of sets of natural numbers (T ′i ), which

converges to the set Te of all exponents of Mersenne primes. We reveal an

exotic structure of the set Te. The existing theory of those structures, order

topology, allows us to prove the conjecture.

Now we repeat a sifting process for primes.

Let pi be the i-th prime, p0 = 2. Let

mi+1 =
i∏
0

pj.

From the entire set of natural numbers, we successively delete the residue

class 0 mod p0, 0 mod p1,. . . , 0 mod pi, i.e., the set of all numbers x such

that the least prime factor of x is pi, instead of the multiples of pi in a given

range. Then the left residue class Ti+1 mod mi+1 is the set of all numbers

x such that x does not contain any prime pj ≤ pi as a factor (x,mi+1) = 1.

Let Ti+1 be the set of least nonnegative representatives of the left residue

class Ti+1 mod mi+1. Then we obtain a recursive formula for the set Ti+1

and the prime pi+1, which represents the recursive sieve method for primes

[9].

T1 = 〈1〉,

p1 = 3,

Ti+1 = (Ti + 〈mi〉〈0, 1, 2, . . . , pi − 1〉) \ 〈pi〉Ti,

pi+1 = g(Ti+1),

(2.1)
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where X ≡ 〈pi〉Ti mod mi+1 is the solution of the system of congruences

X ≡ Ti modmi,

X ≡ 〈0〉 mod pi,

and g(T ) is a projective function, which takes the smallest number in the

set but the number 1.

g(T ) = g(〈t1, t2, . . . , tn〉) = t2.

The cardinality of the set Ti+1 is

|Ti+1| =
i∏
0

(pj − 1).(2.2)

We exhibit the first few terms of formula (2.1)

T1 = 〈1〉,

p1 = 3,

T2 = (〈1〉+ 〈2〉〈0, 1, 2〉) \ 〈3〉 = 〈1, 5〉,

p2 = 5,

T3 = (〈1, 5〉+ 〈6〉〈0, 1, 2, 3, 4〉) \ 〈5, 25〉 = 〈1, 7, 11, 13, 17, 19, 23, 29〉,

p3 = 7.

It is easy to prove this primitive recursive formula by mathematical in-

duction.

In contrast with Eratosthenes sieve, which does not automatically pro-

vide theoretical information, the recursive sieve method itself mechanically

provides a constructive proof of Euclid’s theorem, that there are infinitely

many primes[9].

This formula gives a recursive structure for every prime. Thus primes do

not appear randomly; they are computed one after the other by +,×. They

are governed by a recursive rule. Recursion opens new theoretical windows

onto our understanding of the primes. It seems this is a prime conspiracy.

We may directly extend this constructive proof into several arithmetic

progressions, for example, 3x − 1 or 4x − 1 or 6x − 1. We can not extend

this constructive proof into Mersenne primes.

We rewrite the sifting process for primes to design a sieve for Mersenne

primes and prove the Mersenne prime conjecture.

Based on the recursive sieve method for primes, formula (2.1), we suc-

cessively delete all numbers x such that x contains the least prime factor pi,

we delete all composites together with the prime pi. The sifting condition
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or ‘sieve’ is

x ≡ 0 mod pi ∧ pi ≤ x.

We modify the sifting condition to be

x ≡ 0 mod pi ∧ pi < x. (2.3)

With this new sifting condition or ‘sieve’ we successively delete the set

Ci of all numbers x such that x is composite with the least prime factor pi,

Ci = {x : x ∈ Ti mod mi ∧ x ≡ 0 mod pi ∧ pi < x},

but save the prime pi.

We delete all composite sets Cj with 0 ≤ j < i from the set N of all

natural numbers and leave a sifted set

Li = N \
i−1⋃
0

Cj.

In the sifted set, every number x does not contain any prime pj, with

0 ≤ j < i, as factor except itself.

We delete all composite sets Ci and leave the end-sifted set, which is set

of all primes Te,

Te = N \
∞⋃
0

Ci.

Let Ai be the set of all primes less than pi, the set of survivors

Ai = 〈2, 3, 5, 7, . . . , pi−1〉.

From the recursive formula (2.1), we deduce that the sifted set Li is the

union of the set Ai of survivors and the residue class Ti mod mi,

(2.4)Li = Ai ∪ (Ti mod mi)

Now we modify the sifting condition (2.3) to obtain sets of exponents of

Mersenne primes.

From the identity

2ab − 1 = (2a − 1)(1 + 2a + 22a + 23a + · · ·+ 2(b−1)a),

we know that the Mersenne sequence is a divisibility sequence. In other

words, Mn divides Mm if and only if n divides m. It follows that every

Mersenne prime Mp must has a prime exponent, but not every Mersenne

number Mp with a prime exponent is Mersenne prime; any both Mersenne

numbers Mp and Mq with prime exponents are coprime.

We discuss the set Te of all exponents of Mersenne primes and its infini-

tude in the set N of all exponents of Mersenne numbers.

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

28 Volume 20 | Issue 2 | Compilation 1.0  © 2020 London Journals Press

There are Infinitely Many Mersenne Primes 



 
 

 
 

 
 

 
 

 
 

  
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 
 

 
 

 
 

 
 

 
 

If we only consider a Mersenne number as a divisor of Mersenne num-

bers inside the divisibility system of Mersenne numbers, then the set Te of

all primes is the set of all exponents of Mersenne primes, every Mersenne

number Mp with prime exponent does not contain any Mersenne number

Mx as a factor except 1 and itself.

A Mersenne number Mq with prime exponent may contain normal prime

factors, which are not numbers of the form 2x−1, for example,M11 = 23×89.

Thus we must remove every prime q in the set Te of all primes if Mq contains

a normal prime p as a factor except itself.

Note the notion of divisibility inside the system of Mersenne numbers is

different from the usual notion.

About normal prime factors of a Mersenne number with prime exponent,
we have known some simple facts [1].

(1) A prime number divides at most one Mersenne number with prime

exponent.

(2) Let p be a prime. Then there is a number x such that p|Mx if only

if there is a number c < p such that p|Mc.

(3) If q is an odd prime, then every prime p that divides Mq is congruent

to ±1 mod 8.

(4) If q is an odd prime, then every prime p that divides Mq must be

1 plus a multiple of 2q, p − 1 = 2kq. This holds even when Mq is

prime.

(5) Let p ≡ 3 mod 4 be prime and 2p + 1 is also prime, if and only if

2p+ 1 divides Mp.

One proves (1) by coprime. One proves (2),(3),(4),(5) by Fermat’s little

theorem

ap−1 ≡ 1 mod p.

It follows that we only need to modify successively the set Ai of survivors

for each prime pi to obtain a new set Ai+1 of survivors, such that if a ∈
Ai+1, then Ma contains neither normal prime p ≤ pi nor Mersenne prime

Mp ≤Mpi as a factor except itself.

Given any prime pi , suppose that we have a modified set Ai, then we

obtain the next set Ai+1 by the following rules.

If the prime pi is congruent to ± 1 mod 8, let pi − 1 = 2kq, and if there

is an odd prime q in the set Ai such that

pi < Mq ∧ pi|Mq,
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then Mq is a Mersenne composite, which contains the least normal prime

factor pi. We remove the prime q from the set Ai and add the prime pi to

obtain the set Ai+1.

Ai+1 = (Ai ∪ 〈pi〉) \ 〈q〉.

If there is no such a prime q, example pi ≡ 3, 5, mod 8, then for every

number x in the sifted set Li the Mersenne number Mx does not contain

the normal prime pi as a factor. We add the prime pi into the set Ai

Ai+1 = Ai ∪ 〈pi〉.

Now for every number x in the sifted set Li+1, the Mersenne number Mx

does not contain Mersenne number Mpi
as a factor and does not the normal

prime pi as a factor also except itself.

We exhibit the first few terms of modified sets Ai as examples.

A1 = 〈2〉,

A2 = 〈2, 3〉,

A3 = 〈2, 3, 5〉,

A4 = 〈2, 3, 5, 7〉,

A5 = 〈2, 3, 5, 7, 11〉,

A6 = 〈2, 3, 5, 7, 11, 13〉,

A7 = 〈2, 3, 5, 7, 11, 13, 17〉,

A8 = 〈2, 3, 5, 7, 11, 13, 17, 19〉,

A9 = 〈2, 3, 5, 7, 13, 17, 19, 23〉,M11 = 23× 89,

A10 = 〈2, 3, 5, 7, 13, 17, 19, 23, 29〉,

A11 = 〈2, 3, 5, 7, 13, 17, 19, 23, 29, 31〉,

The sifting condition formula (2.3) is converted into

x ≡ 0 mod pi ∧ pi < x) ∨ (Mx ≡ 0 mod pi ∧ pi < Mx).

The recursive sieve (2.5) is a perfect tool; with this tool, we may delete

exponents of all non-Mersenne primes and leave exponents of all Mersenne

primes. So that we only need to determine the number of all Mersenne

primes |Te|. If we do so successfully, then the parity obstruction, a ghost in

a house of primes, has been automatically evaporated.

With the recursive sieve (2.5), each exponent of non Mersenne prime is

deleted exactly once; there is need neither the inclusion-exclusion principle

nor the estimation of error terms, which cause all the difficulty in normal

sieve theory.

( (2.5)
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According to this sifting condition or ‘sieve’ we successively delete the

set Ci of all numbers x, such that Mx is non-Mersenne prime with the least

factor of Mersenne number Mpi except itself or with the least normal prime

factor pi > 2 except itself,

Ci = {x : x ∈ (Ai ∪ (Ti mod mi)) ∧ ((x ≡ 0 mod pi ∧ pi < x) ∨

(Mx ≡ 0 mod pi ∧ pi < Mx))}.

but remain the survivor x if pi = x or pi = Mx.

We delete all sets of exponents of non Mersenne numbers Cj with 0 ≤
j < i from the set N of all exponents of Mersenne numbers and leave a

sifted set

Li = N \
i−1⋃
0

Cj. (2.6)

In the above sifted set, for every number x, Mersenne number Mx con-

tains neither normal prime p < pi nor Mersenne prime Mp < Mpi as a factor

except itself.

We delete all sets of exponents of non-Mersenne numbers Cj and leave

the end sifted set Te, which is the set of all exponents of Mersenne primes

Te = N \
∞⋃
0

Ci.

The set Ai of survivors is a set of exponents of Mersenne primes or

almost Mersenne primes, the candidates. If a ∈ Ai and Ma < p2i , then Ma

is a Mersenne prime.

Obviously, we have the relation

|Ai| ≤ |Ai+1|.

From the recursive formula (2.1), we deduce again that the sifted set Li is

the union of the set Ai of survivors and the residue class Ti mod mi.

(2.7)Li = Ai
⋃

(Ti mod mi).

Now we intercept an initial segment T ′i from the above sifted set Li, which

is the union of the set Ai of survivor and the set Ti of least nonnegative

representatives, then we obtain a new recursive formula
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(2.8)T ′i = Ai
⋃

Ti.

Except remaining all survivor x less than pi in the initial segment T ′i ,

both sets T ′i and Ti are the same.

For example

A3 = 〈2, 3, 5〉.

T ′3 = 〈2, 3, 5〉 ∪ 〈1, 7, 11, 13, 17, 19, 23, 29〉

= 〈2, 3, 5, 1, 7, 11, 13, 17, 19, 23, 29〉.

Formula (2.8) expresses a recursively sifting process according to the sift-

ing condition (2.5) and provides a recursive definition of the initial segment

T ′i .

The following readers will see that the initial segment is a well-chosen

notation, which makes mathematical reasoning itself easier or even purely

mechanical.

We consider some properties of the initial segment T
′
i , and the limit of the

sequence of the initial segments (T ′i ) to determine the set of all exponents

of Mersenne primes and its cardinality.

The number of elements of the initial segment T ′i is

(2.9)|T ′i | = |Ai|+ |Ti|.

From formula (2.2) we deduce that the cardinal sequence (|T ′i |) is strictly

increasing

|T ′i | < |T ′i+1|.

Based on cardinal arithmetics we have

limT ′i =
⋃
|T ′i | = ℵ0.

Based on order topology, obviously, we have also

lim|T ′i | = ℵ0.

Intuitively we see that the initial segment T ′i approaches the end-sifted

set Te, and the corresponding cardinality |T ′i | approaches infinity as i→∞.

Thus the end-sifted set, the set of all exponents of Mersenne primes is limit

computable and is an infinite set.

We give a formal proof.

(2.10)
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III. THE INFINITUDE OF MERSENNE PRIMES

Let A′i be the subset of all exponents of Mersenne primes in the initial

segment T ′i ,

(3.1)A′i = {x ∈ T ′i : x is an exponent of Mersenne prime}.

Example,

A′1 = 〈2〉,

A′2 = 〈2, 3, 5〉,

A′3 = 〈2, 3, 5, 7, 13, 17, 19〉,

A′4 = 〈2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127〉,

A′5 = 〈2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281〉,

We consider the properties of both sequences of sets (T ′i ) and (A′i) to

prove Mersenne prime conjecture.

Theorem 3.1. The sequence of the initial segments (T ′i ) and the sequence

of its subsets (A′i) of exponents of Mersenne primes both converge to the set

of all exponents of Mersenne primes Te.

First from set theory [5], next from order topology [8], we prove this

theorem.

Proof. For convenience of the reader, we quote a definition of the set-

theoretic limit of a sequence of sets [5].

Let (Fn) be a sequence of sets; we define lim supn=∞ Fn and lim infn=∞ Fn

as follows.

lim sup
n=∞

Fn =
∞⋂
n=0

∞⋃
i=0

Fn+i,

lim inf
n=∞

Fn =
∞⋃
n=0

∞⋂
i=0

Fn+i.

It is easy to check that lim supn=∞ Fn is the set of those elements x, which

belongs to Fn for infinitely many n. Analogously, x belongs to lim infn=∞ Fn

if and only if it belongs to Fn for almost all n, that is, it belongs to all but

a finite number of the Fn.
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If

lim sup
n=∞

Fn = lim inf
n=∞

Fn,

we say that the sequence of sets (Fn) converges to the limit

limFn = lim sup
n=∞

Fn = lim inf
n=∞

Fn.

From formula (2.6) we know that the sequence of sifted sets (Li) is

descending

L1 ⊃ L2 ⊃ · · · ⊃ Li ⊃ · · · · · · .

According to the definition of the set-theoretic limit of a sequence of sets,

we obtain that the sequence of sifted sets (Li) converges to the set Te

limLi =
⋂

Li = Te.

From definition (3.1) the sequence of subsets (A′i) is ascending

A′1 ⊂ A′2 ⊂ · · · ⊂ A′i ⊂ · · · · · · ,

we obtain that the sequence of subsets (A′i) converges to the set Te,

limA′i =
⋃

A′i = Te.

The initial segment T ′i locates between two sets A′i and Li

A′i ⊂ T ′i ⊂ Li.

It is easy to prove that the sequence of initial segments (T ′i ) converges to

the set Te

limT
′
i = Te.

In general, for any sequence of finite sets (Gi), if Gi locates between two

sets A′i and Li,

A′i ⊂ Gi ⊂ Li,

then we have

lim supGi ⊂ limLi,

lim inf Gi ⊃ limA′i.
Thus

limGi = Te,
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According to set theory, we have proved that both sequences of sets (T ′i )

and (A′i) converge to the set of all exponents of Mersenne primes Te.

limT ′i = limA′i = Te.

Even Te = ∅ the limit of set theory is valid too.

We can not use analytic techniques for limits of set theory, so that we try

to endow them with an order topology and prove that according to order

topology, both sequences of sets (T ′i ) and (A′i) converge to the set of all

exponents of Mersenne primes Te.

We quote J.R.Munkres’s definition of the order topology [7][8].

Let X be a set with a linear order relation; assume X has more one

element. Let B be the collection of all sets of the following types:

(1) All open intervals (a, b) in X.

(2) All intervals of the form [a0, b), where a0 is the smallest element (if

any) in X.

(3) All intervals of the form [a, b0), where b0 is the largest element (if

any) in X.

The collection B is a bases of a topology on X, which is called the order

topology.

The empty or singleton is not a linear order < set. There is no order

topology on the empty set or sets with a single element.

The recursively sifting process formula (2.8) produces both sequences of

sets together with the common set-theoretic limit point Te.

X1 : T ′1, T
′
2, . . . , T

′
i , . . . . . . ;Te,

X2 : A′1, A
′
2, . . . , A

′
i, . . . . . . ;Te.

We further consider structures of both sets X1 and X2 using the recur-

sively sifting process (2.8) as an order relation

i < j → T ′i < T ′j , ∀i(T ′i < Te),

i < j → A′i < A′j, ∀i(A′i < Te).

The set X1 has no repetitious term. It is a well ordered set with the order

type ω + 1 using the recursively sifting process (2.8) as an order relation.

Thus the set X1 may be endowed an order topology.

In general, the set X2 may have no repetitious term or may have some

repetitious terms or may be a set with a single element X2 = {∅}; in other

words, A′i = ∅ for all i.
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We have computed out 51 patterns of the first few exponents of Mersenne

primes. The set X2 contains more than one element, it may be endowed an

order topology using the recursively sifting process (2.8) as an order relation.

Obviously, for every neighborhood (c, Te] of Te, there is a natural number

i0, for all i > i0, we have T ′i ∈ (c, Te] and A′i ∈ (c, Te]. Thus both sequences

of sets (T ′i ) and (A′i) converge to the set of all exponents of Mersenne primes

Te.

limA′i = Te,

limT ′i = Te.

According to order topology, we have again proved that both sequences

of sets (T ′i ) and (A′i) converge to the set of all exponents of Mersenne primes

Te. We also have

lim T ′i = limA′i. (3.2)

Only if Te = ∅ under some sifting conditions, the set X2 only has a single

element ∅, which has no order topology by definition. In this case, formula

(3.2) is not valid, and we prove nothing by order topology.

In the last section, we shall discuss the existence of the order topological

limits limT ′i , limA′i.

Theorem 3.1 and formula (2.10) reveal some particular order topological

structures of the set of all exponents of Mersenne primes Te on the sets

X1,X2. Now we can prove that the set of all exponents of Mersenne primes

is infinite set based on usual theorems of general topology.

Theorem 3.2. The set of all exponents of Mersenne primes is infinite.

We give two proofs.

Proof. A

We consider cardinalities |T ′i | and |A′i| of sets on two sides of the equality

(3.2), and order topological limits of cardinal sequences (|T ′i |) and (|A′i|) with

the usual order relation ≤, as both sets T ′i and A′i tend to Te.

From general topology, we know that if the limits of both cardinal se-

quences (|T ′i |) and (|A′i|) on two sides of the equality (3.2) exist, then both

limits are equal; if lim |A′i| does not exist, then the condition for the exis-

tence of the limit lim |T ′i | is not sufficient [6].
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For exponents of Mersenne primes, the set Te is nonempty Te 6= ∅, the

formula (3.2) is valid. Obviously, the order topological limits lim |A′i| and

lim |T ′i | on two sides of the equality (3.2) exist, thus both limits are equal

lim |A′i| = lim |T ′i |.

From formula (2.10) lim |T ′i | = ℵ0 we have

lim |A′i| = ℵ0.

Usually, let π (n) be the counting function, the number of exponents of

Mersenne primes less than n. Normal sieve theory, analytic number theory,

is unable to provide non-trivial lower bounds of π(n) due to the parity

problem. Let n be a natural number. Then the number sequence (mi) is a

subsequence of the number sequence (n), we obtain

limπ(n) = lim π(mi).

By formula (3.1), the A′i is the set of exponents of all Mersenne primes

less than mi, and the |A′i| is the number of exponents of all Mersenne primes

less than mi, thus π(mi) = |A′i|. We have

limπ(mi) = lim |A′i|.

(3.3)

lim π(n) = ℵ0.

We directly proved the conjecture with the counting function π(n).

Next, we give another proof by the continuity of the cardinal function in

the above particular order topological space.

The continuous function is a morphism between topological spaces, which

preserves the topological structures.

The continuity depends only on the topologies of its domain and range

spaces.

Proof. B

Let f : X→ Y be the cardinal function from the order topological space

X to the order topological space Y, such that f(T ) = |T |.

X : T ′1, T
′
2, . . . , T

′
i , . . . . . . ; Te,

Y : |T ′1|, |T ′2|, . . . , |T ′i |, . . . . . . ;ℵ0.
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(3.5)| limT ′i | = lim |T ′i |.

The order topological spaces are Hausdorff spaces. In Hausdorff spaces,

the limit point of the sequence of sets (T ′i ) and the limit point of the cardinal

sequence (|T ′i |) are unique if both exist.

We have proved theorem 3.1, lim T ′i = Te, and formula (2.10), lim |T ′i | =
ℵ0. Substitute both into formula (3.5); we obtain that the set of exponents

of all Mersenne primes is infinite,

(3.6)|Te| = ℵ0.

In the last section, we discuss the existence of the limits lim |T ′i | and

limT ′i .

Without any estimation or statistical data, without the Riemann hy-

pothesis, by the recursive sieve method, we reveal the recursive structure,

set theoretic structure and order topological structure of the set Te on se-

quences of sets. The well known theories of those structures allow us to

prove the Mersnne prime conjecture.

In the first order formal system there is no such proof.

We proved that the set of exponents all of Mersenne primes is an infinite

set. In other words we have proved that the Mersenne prime conjecture is
true.

It is easy to check that for every open set [ |T ′1|, |d|), (|c|, |d|), (|c|,ℵ0] in Y

the preimage [T ′1, d), (c, d), (c, Te] is also an open set in X. According to the

definition of continuity of a function, the cardinal function |T | is continuous

at Te with respect to the above order topology.
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IV. DISCUSSION

In general, we can not prove that the cardinal function on sequences of

sets is continuous. . There is a counterexample, the Ross-Littwood paradox

[12] [14].

Theorem 3.3. There are infinitely many Mersenne primes.

By the Euclid–Euler theorem we also prove

Theorem 3.4. There are infinitely many even perfect numbers.

Similarly, we may prove the Fibonacci prime conjecture, in another pa-

per, we discuss this conjecture.



   

 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For example: consider the limit of the sequence of sets, which have no

pattern
Ti = 〈i+ 1, i+ 2, . . . , 10i〉.

From set theory we know limTi = Te = ∅, thus |Te| = 0. But we also

have lim |Ti| = lim 10i = ∞ from real analysis. If the cardinal function is

continuous, then there is a contradiction in real analysis, the empty has

an infinite cardinality. In this case, one can only get up the continuity and

says that there is no relation between the cardinality of the end sifted set

|Te| = 0 and the limit lim |Ti| =∞.

By the recursive sieve method, we have revealed that the set Te of all

exponents of Mersenne primes has the structure of a particular order topol-

ogy

limT ′i = Te.

So that we consider the conjecture in the particular order topological space,

which is generated naturally by the recursively sifting process (2.8), rather

than in real analysis, a quantitative model of prime sets or heuristics model.

We consider all sequences of finite sets (Gi), such that A′i ⊂ Gi ⊂ Li,

they converge to the end sifted set Te from set theory

limGi = Te.

We try to endow all set-theoretical convergences limGi = Te with an

order topology using the recursively sifting process (2.8) as an order relation,

then construct a particular order topological space G.

Here we must be careful about the existence of order topological limits.

First, according to the definition, there exists no order topology on the

empty set or sets with a single element[7] [8].

Next, we quote topologist L.D. Kudryavtsev’s the existence of limits of

a function for lim |Gi|.

If the space X satisfies the first axiom of countability at the point Te

and the space Y is Hausdorff, then for existence of the limit lim |Gi| of the

cardinal function |Gi| , it is necessary and sufficient that for any sequence
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(Gi) , such that limGi = Te , the limit lim |Gi| exists. If this condition holds,

the limit lim |Gi| does not depend on the choice of the sequence (Gi) , and

the common value of these limits is the limit of (|Gi|) at T [6].



  
 

 
 

 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
  

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

Note, we consider the set sequences; the empty ∅ is as an element. If we

find out at least one prime pattern, then the set sequence (A′i) has more

one element.

Only if the end sifted set is empty Te = ∅, the limits limA′i and lim |A′i|
have no existence. The existence of all other limits limGi, lim |Gi| is not

sufficient from the above general topology. Thus at the point Te = ∅, there

is no “continuous” or “non-continuous”. There is no contradiction. In this

case, one needs no order topology.

If the end sifted set is not empty Te 6= ∅, since the inclusion relation

Gi ⊃ A′i, the sequence (A′i) has more one element, every sequence (Gi) has

more one element, every limit of set theory limGi may be endowed with

an order topology. Every limit of order topology limGi has existence, every

limit of order topology lim |Gi| has existence. The condition of existence of

lim |T ′i |, limT ′i , lim |A′i|, limA′i is sufficient. Thus our proof of the theorem

3.1 and 3.2 is correct.

In the formal system P (N) we deal with the Ross-Littwood paradox and

find out a proof of the Mersenne prime conjecture in the particular order

topological space.

The Ross-Littwood paradox shows that the restricted definition for order

topology, assume X has more one element, is necessary.

We consider the set of various prime patterns Te, in advance, we have

known at least one prime pattern, and in advance, we have known that the

end sifted set is not empty Te 6= ∅.

By the same paradigm, we may predicate whether another prime pattern

will persist for ever or not.
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