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result, any random experiment can be executed in the complex probabilities set C which is the sum 
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probability in C is computed after the subtraction of the chaotic factor from the degree of our 
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well-known Central Limit Theorem and to prove as well its convergence in a novel way.
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The concept of mathematical probability was established in 1933 by 

Andrey Nikolaevich Kolmogorov by defining a system of five axioms. This system can be 

enhanced to encompass the imaginary numbers set after the addition of three novel axioms. As a 

result, any random experiment can be executed in the complex probabilities set C which is the sum 

of the real probabilities set R and the imaginary probabilities set M. We aim here to incorporate 

supplementary imaginary dimensions to the random experiment occurring in the “real” laboratory 

in R and therefore to compute all the probabilities in the sets R, M, and C. Accordingly, the 

probability in the whole set C = R + M is constantly equivalent to one independently of the 

distribution of the input random variable in R, and subsequently the output of the stochastic 

experiment in R can be determined absolutely in C. This is the consequence of the fact that the 

probability in C is computed after the subtraction of the chaotic factor from the degree of our 

knowledge of the nondeterministic experiment. We will apply this innovative paradigm to the 

well-known Central Limit Theorem and to prove as well its convergence in a novel way.

complex set, degree of our knowledge, chaotic factor, probability norm, complex 

random vector, convergence probability, divergence probability, simulation.

NOMENCLATURE

R = real set of events

M = imaginary set of events

C = complex set of events

i        = the imaginary number where 1i = − or 2 1i = −

EKA = Extended Kolmogorov's Axioms

CPP    = Complex Probability Paradigm

Prob = probability of any event

Pr     = probability in the real set R = probability of convergence in R

Pm = probability in the imaginary set M corresponding to the real probability in R =         

               probability of divergence in M

Pc     = probability of an event in R with its associated complementary event in M = 

               probability in the complex probability set C
z    = complex probability number = sum of Pr and Pm = complex random vector
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The Paradigm of Complex Probability and the Central 
Limit Theorem 

Abstract-

DOK      =
2

z = the degree of our knowledge of the random system or experiment, it is the square 

               of the norm of z

Chf      = the chaotic factor of z

MChf    = magnitude of the chaotic factor of z

n   = number of random vectors = the random sample size

Abdo Abou Jaoudé



L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

2 Volume 20 | Issue 5 | Compilation 1.0  © 2020 London Journals Press

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Firstly, in this introductory section an overview of the central limit theorem will be done.

In probability theory, the central limit theorem (CLT) establishes that, in some situations, 

when independent random variables are added, their properly normalized sum tends toward 

a normal distribution (informally a bell-shaped curve) even if the original variables themselves are 

not normally distributed. The theorem is a key concept in probability theory because it implies that 

probabilistic and statistical methods that work for normal distributions can be applicable to many 

problems involving other types of distributions.

Mathematically, if
1 2, , , nx x x is a random sample of size n taken from a population with mean

 and finite variance 2 and if
nS is the sample mean, the limiting form of the distribution 

of
/

nS

n





− 
 =  

 
as n→+ , is the standard normal distribution (0,1) ( / )N  = [1]. For 

example, suppose that a sample is obtained containing many observations, each observation being 

randomly generated in a way that does not depend on the values of the other observations, and that 

the arithmetic mean of the observed values is computed. If this procedure is performed many 

times, the central limit theorem says that the probability distribution of the average will closely 

approximate a normal distribution. A simple example of this is that if one flips a coin many times, 

the probability of getting a given number of heads will approach a normal distribution, with the 

nS          = the random sample mean of size n

Z    = the resultant complex random vector = 
1

n

j

j

z
=



2

2Z

Z
DOK

n
= = the degree of our knowledge of the whole stochastic system

2Z

Chf
Chf

n
=   = the chaotic factor of the whole stochastic system

ZMChf = magnitude of the chaotic factor of the whole stochastic system

UZ         = the resultant complex random vector corresponding to a uniform random distribution

UZDOK = the degree of our knowledge of the whole stochastic system corresponding to a 

                 uniform random distribution

UZChf    = the chaotic factor of the whole stochastic system corresponding to a uniform random 

               distribution

UZMChf = the magnitude of the chaotic factor of the whole stochastic system corresponding to a 

                 uniform random distribution

UPc        = probability in the complex probability set C of the whole stochastic system 

                 corresponding to a uniform random distribution

CLT      = Central Limit Theorem

I. Introduction

 

 

 

 

 

 

 

mean equal to half the total number of flips. At the limit of an infinite number of flips, it will equal 

a normal distribution.

The central limit theorem has several variants. In its common form, the random variables must be 

identically distributed. In variants, convergence of the mean to the normal distribution also occurs 

for non-identical distributions or for non-independent observations, if they comply with certain 

conditions. The earliest version of this theorem, that the normal distribution may be used as an 

approximation to the binomial distribution, is the De Moivre–Laplace theorem.

The Paradigm of Complex Probability and the Central Limit Theorem
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The Dutch mathematician Henk Tijms writes [2]:

“The central limit theorem has an interesting history. The first version of this theorem was 

postulated by the French-born mathematician Abraham De Moivre who, in a remarkable article 

published in 1733, used the normal distribution to approximate the distribution of the number of 

heads resulting from many tosses of a fair coin. This finding was far ahead of its time, and was 

nearly forgotten until the famous French mathematician Pierre-Simon Laplace rescued it from 

obscurity in his monumental work “Théorie analytique des probabilités”, which was published in 

1812. Laplace expanded De Moivre's finding by approximating the binomial distribution with the 

normal distribution. But as with De Moivre, Laplace's finding received little attention in his own 

time. It was not until the nineteenth century was at an end that the importance of the central limit 

theorem was discerned, when, in 1901, Russian mathematician Aleksandr Lyapunov defined it in 

general terms and proved precisely how it worked mathematically. Nowadays, the central limit 

theorem is considered to be the unofficial sovereign of probability theory.”

Moreover, Sir Francis Galton described the Central Limit Theorem in this way [3]:

“I know of scarcely anything so apt to impress the imagination as the wonderful form of cosmic 

order expressed by the "Law of Frequency of Error". The law would have been personified by the 

Greeks and deified, if they had known of it. It reigns with serenity and in complete self-effacement, 

amidst the wildest confusion. The huger the mob, and the greater the apparent anarchy, the more 

perfect is its sway. It is the supreme law of Unreason. Whenever a large sample of chaotic elements 

are taken in hand and marshalled in the order of their magnitude, an unsuspected and most beautiful 

form of regularity proves to have been latent all along.”

Additionally, the actual term "Central Limit Theorem" (in German: "zentraler Grenzwertsatz") 

was first used by George Pólya in 1920 in the title of a paper [4,5]. Pólya referred to the theorem 

as "central" due to its importance in probability theory. According to Le Cam, the French school 

of probability interprets the word central in the sense that "it describes the behavior of the center

of the distribution as opposed to its tails" [5]. The abstract of the paper On the central limit theorem 

of calculus of probability and the problem of moments by Pólya [4] in 1920 translates as follows:

“The occurrence of the Gaussian probability density
2

1 xe−= in repeated experiments, in errors of 

measurements, which result in the combination of very many and very small elementary errors, in 

diffusion processes etc., can be explained, as is well-known, by the very same limit theorem, which 

plays a central role in the calculus of probability. The actual discoverer of this limit theorem is to 

be named Laplace; it is likely that its rigorous proof was first given by Tschebyscheff and its 

sharpest formulation can be found, as far as I am aware of, in an article by Liapounoff. ...”

A thorough account of the theorem's history, detailing Laplace's foundational work, as well 

as Cauchy's, Bessel's and Poisson's contributions, is provided by Hald [6]. Two historical 

accounts, one covering the development from Laplace to Cauchy, the second the contributions 

by von Mises, Pólya, Lindeberg, Lévy, and Cramér during the 1920s, are given by Hans Fischer

[7]. Le Cam describes a period around 1935 [5]. Bernstein [8] presents a historical discussion 

focusing on the work of Pafnuty Chebyshev and his students Andrey Markov and Aleksandr 

Lyapunov that led to the first proofs of the CLT in a general setting.

Through the 1930s, progressively more general proofs of the Central Limit Theorem were 

presented. Many natural systems were found to exhibit Gaussian distributions—a typical example 

being height distributions for humans. When statistical methods such as analysis of variance 

became established in the early 1900s, it became increasingly common to assume underlying 

Gaussian distributions [9].

A curious footnote to the history of the Central Limit Theorem is that a proof of a result similar to 

the 1922 Lindeberg CLT was the subject of Alan Turing's 1934 Fellowship Dissertation for King's 

The Paradigm of Complex Probability and the Central Limit Theorem
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 College at the University of Cambridge. Only after submitting the work did Turing learn it had 

already been proved. Consequently, Turing's dissertation was not published [10-22].

Finally, and to conclude, this research work is organized as follows: After the introduction in 

section I, the purpose and the advantages of the present work are presented in section II. Afterward, 

in section III, we will summarize the complex probability paradigm with its original parameters 

and with a brief interpretation. In section IV, the De Moivre–Laplace theorem will be explained. 

In section V, the Poisson theorem will be clarified. In section VI, the Central Limit Theorem will 

be presented. In section VII, I will extend the Central Limit Theorem to the imaginary and complex 

probability sets and hence link this concept to my novel complex probability paradigm. Moreover, 

in this section, I will prove the convergence in CLT using the concept of the resultant complex 

random vector Z. Furthermore, in section VIII a flowchart of the complex probability paradigm 

and CLT prognostic model will be drawn. Additionally, in section IX, the simulations of CLT will 

be accomplished in the discrete and continuous cases. Finally, I conclude the work by doing a 

comprehensive summary in section X, and then present the list of references cited in the current 

research work.

In this section we will present the purpose and the advantages of the current research work.

Calculating probabilities is the crucial task of classical probability theory. Adding supplementary 

dimensions to nondeterministic experiments will yield a deterministic expression of the theory of 

probability. This is the novel and original idea at the foundations of my complex probability 

paradigm. As a matter of fact, probability theory is a stochastic system of axioms in its essence; 

that means that the phenomena outputs are due to randomness and chance. By adding novel 

imaginary dimensions to the nondeterministic phenomenon happening in the set R will lead to a

deterministic phenomenon and thus a stochastic experiment will have a certain output in the 

complex probability set C. If the chaotic experiment becomes completely predictable then we will 

be fully capable to predict the output of random events that arise in the real world in all stochastic 

processes. Accordingly, the task that has been achieved here was to extend the random real 

II. The Purpose and the Advantages of The Present Work

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

probabilities set R to the deterministic complex probabilities set C = R + M and this by 

incorporating the contributions of the set M which is the complementary imaginary set of 

probabilities to the set R. Consequently, since this extension reveals to be successful, then an 

innovative paradigm of stochastic sciences and prognostic was put forward in which all

nondeterministic phenomena in R was expressed deterministically in C. I coined this novel model 

by the term "The Complex Probability Paradigm" that was initiated and established in my fourteen 

earlier research works. [23-36]

Accordingly, the advantages and the purpose of the present paper are to:

1- Extend the theory of classical probability to cover the complex numbers set, hence to 

connect the probability theory to the field of complex variables and analysis. This task was

started and elaborated in my earlier fourteen papers.

2- Apply the novel probability axioms and paradigm to the CLT.

3- Show that all nondeterministic phenomena can be expressed deterministically in the 

complex probabilities set which is C.

4- Compute and quantify both the degree of our knowledge and the chaotic factor in CLT.

5- Represent and show the graphs of the functions and parameters of the innovative paradigm 

related to CLT.

The Paradigm of Complex Probability and the Central Limit Theorem
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6- Demonstrate that the classical concept of probability is permanently equal to one in the set 

of complex probabilities; hence, no chaos, no randomness, no ignorance, no uncertainty, 

no unpredictability, no nondeterminism, and no disorder exist in:

C (complex set) = R (real set) + M (imaginary set).

7- Prove the convergence in the stochastic CLT in an original way by using the newly defined 

axioms and paradigm.

8- Pave the way to implement this inventive model to other topics in prognostics and to the 

field of stochastic processes. These will be the goals of my future research works. 

Concerning some applications of the original elaborated paradigm and as a future work, it can be 

applied to any random phenomena using CLT methods whether in the discrete or in the continuous 

cases.

Furthermore, compared with existing literature, the main contribution of the present research work

is to apply the novel paradigm of complex probability to the concepts and techniques of the 

stochastic CLT methods and simulations as well as to prove the convergence in CLT in a novel and 

original way. The next figure illustrates the major purposes and objectives of the Complex 

Probability Paradigm (CPP) (Figure 1).

The diagram of the main purposes of the Complex Probability Paradigm

Complex
Probability 
Paradigm

Probability 
Theory

Complex 
Analysis

Central 
Limit 

Theorem

Stochastic 
Events

Applied to

Applied to

Applied to

Applied to

Figure 1: 

The simplicity of Kolmogorov’s system of axioms may be surprising. Let E be a collection 

of elements {E1, E2, …} called elementary events and let F be a set of subsets of E called random 

events. The five axioms for a finite set E are:

III. The Complex Probability Paradigm [23-36] [37-68] 
 
3.1  The Original Andrey Nikolaevich Kolmogorov System of Axioms 
 

The Paradigm of Complex Probability and the Central Limit Theorem
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Axiom 1:  F is a field of sets.

Axiom 2:  F contains the set E.

Axiom 3:  A non-negative real number Prob(A), called the probability of A, is assigned to each

                  set A in F. We have always 0  Prob(A)  1.

Axiom 4:  Prob(E) equals 1.

Axiom 5:  If A and B have no elements in common, the number assigned to their union is:

( ) ( ) ( )rob rob robP A B P A P B = +

     hence, we say that A and B are disjoint; otherwise, we have:

( ) ( ) ( ) ( )rob rob rob robP A B P A P B P A B = + − 

And we say also that: ( ) ( ) ( / ) ( ) ( / )rob rob rob rob robP A B P A P B A P B P A B =  =  which is the 

conditional probability. If both A and B are independent then: ( ) ( ) ( )rob rob robP A B P A P B =  .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moreover, we can generalize and say that for N disjoint (mutually exclusive) events 

1 2, , , , ,j NA A A A (for 1 j N  ), we have the following additivity rule: 

( )
11

N N

rob j rob j

jj

P A P A
==

 
= 

 


And we say also that for N independent events 
1 2, , , , ,j NA A A A (for 1 j N  ), we have the 

following product rule:  

( )
11

N N

rob j rob j

jj

P A P A
==

 
= 

 


M

Now, we can add to this system of axioms an imaginary part such that:

Axiom 6:  Let (1 )m rP i P=  − be the probability of an associated complementary event in M (the 

imaginary part) to the event A in R (the real part). It follows that / 1r mP P i+ = where i is the 

imaginary number with 1i = − or 2 1i = − .

Axiom 7:  We construct the complex number or vector (1 )r m r rZ P P P i P= + = + −   having a norm 

Z such that:   

2 2 2( / )r mZ P P i= + .

Axiom 8:  Let Pc denote the probability of an event in the complex probability universe C where 

C = R + M. We say that Pc is the probability of an event A in R with its associated complementary 

event in M such that:

22 2( / ) 2r m r mPc P P i Z iP P= + = −   and is always equal to 1.

We can see that by taking into consideration the set of imaginary probabilities we added three new 

and original axioms and consequently the system of axioms defined by Kolmogorov was hence 

expanded to encompass the set of imaginary numbers.

 
3.2  Adding the Imaginary Part 
 

The Paradigm of Complex Probability and the Central Limit Theorem
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To summarize the novel paradigm, we state that in the real probability universe R our degree of 

our certain knowledge is undesirably imperfect and hence unsatisfactory, thus we extend our

analysis to the set of complex numbers C which incorporates the contributions of both the set of 

real probabilities which is R and the complementary set of imaginary probabilities which is M. 

Afterward, this will yield an absolute and perfect degree of our knowledge in the probability 

universe C = R + M because Pc = 1 constantly. As a matter of fact, the work in the complex 

universe C gives way to a sure prediction of any stochastic experiment, because in C we remove 

and subtract from the computed degree of our knowledge the measured chaotic factor. This will 

generate a probability in the universe C equal to 1 (Pc2 = DOK− Chf = DOK + MChf = 1 = Pc). 

Many illustrations taking into consideration numerous continuous and discrete probability 

distributions in my fourteen previous research papers confirm this hypothesis and innovative 

paradigm [23-36]. The Extended Kolmogorov Axioms (EKA for short) or the Complex Probability 

Paradigm (CPP for short) can be shown and summarized in the next illustration (Figure 2):

The EKA or the CPP summarized illustration

5 original 

Kolmogorov 

axioms

Real Probability Pr

Pr

Input:

Real set R
Output:

Complex set C

A total of 8 axioms

Complex number Z = Pr + Pm

Complex Probability Pc = 1

Pc2 = DOK – Chf = 1

     Pc2 = DOK + MChf = 1

Adding 3 axioms

Imaginary Probability Pm

 Chf  = 2iPrPm

 MChf  = |Chf|

Add:

Imaginary set M

Total 

Determinism

Chance

and

Luck

 

 

 

 

 

 

 

 

In probability theory, the De Moivre–Laplace theorem, which is a special case of the central limit 

theorem, states that the normal distribution may be used as an approximation to the binomial 

distribution under certain conditions. In particular, the theorem shows that the probability mass

function of the random number of "successes" observed in a series of n independent Bernoulli 

trials, each having a probability p of success and a probability 1q p= − of failure (a binomial 

distribution with n trials), converges to the probability density function of the normal distribution 

with mean np and standard deviation (1 )np p npq− = , as n grows large, assuming p is not

0 or 1.

3.3  A Brief Interpretation of the Novel Paradigm 
 

IV. The De Moivre–Laplace Theorem [69-71] 

Figure 2: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The theorem appeared in the second edition of The Doctrine of Chances by Abraham De Moivre, 

published in 1738. Although De Moivre did not use the term "Bernoulli trials", he wrote about 

the probability distribution of the number of times "heads" appears when a coin is tossed 3600 

times.
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This is one derivation of the particular Gaussian function used in the normal distribution.

Mathematically, as n grows large, for k in the neighborhood of np we can approximate
2( )

2
1

( )
2

k np
k n k

npq
rob

n
P X k p q

k npq
e



−
−− 

= =  
 

    

Where 1,    , 0p q p q+ = 

And 
!

( , )
!( )!

n k

n n
C C n k

k k n k

 
= = = 

− 
is the binomial coefficient.

In the sense that the ratio of the left-hand side to the right-hand side converges to 1 as n→+ .

In probability theory and statistics, the Poisson distribution, named after the French mathematician 

Siméon Denis Poisson is a discrete probability distribution that expresses the probability of a given 

number of events occurring in a fixed interval of time or space if these events occur with a known 

constant mean rate and independently of the time since the last event. The Poisson distribution can 

also be used for the number of events in other specified intervals such as distance, area or volume.

The Poisson distribution is popular for modeling the number of times an event occurs in an interval 

of time or space.

A discrete random variable X is said to have a Poisson distribution with parameter 0  , if, 

for 0,1,2, ,k = + , the probability mass function of X is given by:

( ; ) ( )
!

k

rob

e
f k P X k

k




−

= = =

Where,

e is Euler's number or the basis of logarithms (e = 2.71828...)

and !k is the factorial of k.

The positive real number  is equal to the expected value of X and also to its variance:

E( ) Var( )X X = =

The Poisson distribution can be applied to systems with a large number of possible events, each of 

which is rare. The number of such events that occur during a fixed time interval is, under the right 

circumstances, a random number with a Poisson distribution.

The Poisson distribution can be derived as a limiting case to the binomial distribution as the 

number of trials goes to infinity and the expected number of successes remains fixed. Therefore, 

it can be used as an approximation of the binomial distribution if n is sufficiently large and p is 

sufficiently small. There is a rule of thumb stating that the Poisson distribution is a good 

approximation of the binomial distribution if n is at least 20 and p is smaller than or equal to 0.05, 

and an excellent approximation if 100n  and 10np  . The cumulative distribution functions of 

the Poisson and Binomial distributions are related in the following way:

V. The Poisson Distribution and the CLT [72-75] 

The Paradigm of Complex Probability and the Central Limit Theorem
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Binomial Poisson( ; , ) ( ; )F k n p F k np =

For sufficiently large values of  , (say 1000  ), the normal distribution with mean  and 

variance  (standard deviation =  ) is an excellent approximation to the Poisson distribution. 

If  is greater than about 10, then the normal distribution is a good approximation if an 

appropriate continuity correction is performed. The cumulative distribution functions of the 

Poisson and Normal distributions are related in the following way:

2

Poisson Normal( ; ) ( ; , )F x np F x    = = =

Let  1 2, , , nx x x be a random sample of size n , that is, a sequence of independent and 

identically distributed random variables drawn from a distribution of expected value given 

by  and finite variance given by 2 . Suppose we are interested in the sample average which is:

1 2 n
n

x x x
S

n

+ + +
=

of these random variables. By the law of large numbers, the sample averages converge in 

probability and almost surely to the expected value  as n→+ . The classical central limit 

theorem describes the size and the distributional form of the stochastic fluctuations around the 

deterministic number  during this convergence. More precisely, it states that as n gets larger, 

the distribution of the difference between the sample average
nS and its limit  , when multiplied 

by the factor n (that is ( )nn S − ), approximates the normal distribution with mean 0 and 

variance 2 . For large enough n , the distribution of
nS is close to the normal distribution with 

mean  and variance 2 / n hence with a standard deviation / n . The usefulness of the 

theorem is that the distribution of ( )nn S − approaches normality regardless of the shape of the 

distribution of the individual jx . Formally, the theorem can be stated as follows:

Lindeberg–Lévy CLT: Suppose  1 2, , , nx x x is a sequence of independent and identically 

distributed random variables with E[ ]jx = and
2Var[ ]jx = + ,  :   1j j n   .

Then as n approaches infinity, the random variables ( )nn S − converge in distribution to 

a normal distribution 2(0, )N  :

( ) 2(0, )nn S N − → .

 

 

 

 

 

In the case 0  , convergence in distribution means that the cumulative distribution 

functions of ( )nn S − converge pointwise to the cumulative distribution function (CDF) of 

the 2(0, )N  distribution: for every real number  ,

( )
( )

lim lim
n

rob n rob
n n

n S
P n S P

  
 

  →+ →+

 −   −  =  =        

VI. The Classical Central Limit Theorem [13] 

The Paradigm of Complex Probability and the Central Limit Theorem
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where ( ) is the standard normal CDF evaluated at  . The convergence is uniform in  in 

the sense that:

( )
lim sup 0

n

rob
n R

n S
P



  

  →+ 

 −  
 − =   

   

where ‘sup’ denotes the least upper bound (or supremum) of the set.

A powerful tool will be described in the current section which was developed in my 

personal previous research papers and which is founded on the concept of a complex random 

vector that is a vector combining the real and the imaginary probabilities of a random outcome, 

defined in the three added axioms of CPP by the term 
j r j m jz P P= + . Accordingly, we will define

the vector Z as the resultant complex random vector which is the sum of all the complex random 

vectors 
jz in the complex probability plane C. This procedure is illustrated by considering first a 

general Bernoulli distribution, then we will discuss a discrete probability distribution with n

equiprobable random vectors as a general case. In fact, if z represents one vector from the uniform 

distribution U, then UZ represents the whole system of vectors from the uniform distribution U

that means the whole random distribution in the complex probability plane C. So, it follows directly 

that a Bernoulli distribution can be understood as a simplified system or population with two 

random  variables (section 7.1),  whereas  the general case is a random system or population with 

n random variables (section 7.2). Afterward, I will prove the convergence in CLT using  this new 

powerful concept and tool (section 7.3).

First, let us consider the following general Bernoulli distribution and let us define its complex 

random vectors and their resultant (Table 1):

Outcome
jx 1x 2x

In R 
r jP 1rP p= 2rP q=

In M
m jP

1 (1 )mP i p iq= − = 2 (1 )mP i q ip= − =

In C = R + M
jz

1 1 1r mz P P= + 2 2 2r mz P P= +

Where, 

1x and 2x are the outcomes of the first and second random vectors respectively.

Pr1 and Pr2 are the real probabilities of 1x and 2x respectively.

Pm1 and Pm2 are the imaginary probabilities of 1x and 2x respectively.

We have
2

1 2

1

1r j r r

j

P P P p q
=

= + = + =

A general Bernoulli distribution in R, M, and C

 

VII. The Resultant Complex Random Vector Z of CPP and the Central Limit Theorem [23-36]  
[76-95] 

7.1   The Resultant Complex Random Vector Z of a General Bernoulli Distribution (A Distribution with Two 
Random Variables) 

Table 1:

The Paradigm of Complex Probability and the Central Limit Theorem
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and
2

1 2

1

(1 )

 (2 1) ( 1)

mj m m

j

P P P iq ip i p ip

i ip ip i i i n

=

= + = + = − +

= − + = = − = −



Where n is the number of random vectors or outcomes which is equal to 2 for a Bernoulli 

distribution.

The complex random vector corresponding to the random outcome 
1x is: 

1 1 1 (1 )r mz P P p i p p iq= + = + − = +

The complex random vector corresponding to the random outcome 
2x is: 

2 2 2 (1 )r mz P P q i q q ip= + = + − = +

The resultant complex random vector is defined as follows:
2 2 2

1 2

1 1 1

  ( ) ( ) ( ) ( )

  1 1 (2 1)

1 ( 1)

j r j mj

j j j

Z z z z P P

p iq q ip p q i p q

i i

Z i n

= = =

= = + = +

= + + + = + + +

= + = + −

 = + −

  

                                                              

The probability 1Pc in the complex plane C = R + M which corresponds to the complex random 

vector 
1z is computed as follows:

 

 

 

 

 

 

 

 

 

 

 

 

 

2 2 2 2 2

1 1 1

1 1 1

22

1 1 1

2 2 2 2

1

( / )

2 / 2

           2 ( ) 1 1

1

r m

r m

z P P i p q

Chf P P i pq

Pc z Chf

p q pq p q

Pc

= + = +

= − = −

 = −

= + + = + = =

 =

This is coherent with the three novel complementary axioms defined for the CPP.

Similarly, 2Pc corresponding to 
2z is:

2 2 2 2 2

2 2 2

2 2 2

22

2 2 2

2 2 2 2

2

( / )

2 / 2

           2 ( ) 1 1

1

r m

r m

z P P i q p

Chf P P i qp

Pc z Chf

q p qp q p

Pc

= + = +

= − = −

 = −

= + + = + = =

 =

The Paradigm of Complex Probability and the Central Limit Theorem
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The probability Pc in the complex plane C which corresponds to the resultant complex random 

vector 1Z i= + is computed as follows: 

2 2
2 2

2 2 2

1 1

2 2

1 1

22

2 22
2

2 2 2 2 2

/ 1 1 2

2 / 2(1)(1) 2

Let 2 2 4 2

4 4
1

2 4

2
1

2

r j m j

j j

r j m j

j j

Z P P i

Chf P P i

s Z Chf s

Z Chf Zs Chf
Pc

n n n n

s
Pc

n

= =

= =

   
= + = + =   
   

= − = − = −

= − = + =  =

−
 = = = − = = =

 = = =

 

 

Where s is an intermediary quantity used in our computation of Pc. 

Pc is the probability corresponding to the resultant complex random vector Z in the probability 

universe C = R + M and is also equal to 1. Actually, Z represents both 
1z and 

2z that means the 

whole distribution of random vectors of the general Bernoulli distribution in the complex plane C

and its probability Pc is computed in the same way as 1Pc and 2Pc .

By analogy, for the case of one random vector 
jz we have:

2
2    with  ( 1)j j jPc z Chf n= − = .

In general, for the vector Z we have:

2

2

2 2
; ( 1)

Z Chf
Pc n

n n
= − 

Where the degree of our knowledge of the whole distribution is equal to 

2

2Z

Z
DOK

n
= , its relative 

chaotic factor is
2Z

Chf
Chf

n
= , and its relative magnitude of the chaotic factor is

Notice, if n = 1 in the previous formula, then:
2 2

222 2

2 2 2 21 1
Z Z j j j

Z ZChf Chf
Pc DOK Chf  Z  Chf z Chf Pc

n n
= − = − = − = − = − =

which is coherent with the calculations already done.

To illustrate the concept of the resultant complex random vector Z, I will use the following graph 

(Figure 3).

Z ZMChf Chf=

The Paradigm of Complex Probability and the Central Limit Theorem
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The resultant complex random vector

1 2Z z z= + for a general Bernoulli distribution 

in the complex probability plane C

As a general case, let us consider then this discrete probability distribution with n

equiprobable random vectors which is a discrete uniform probability distribution U. In fact,

let
1 2{ , , , }nx x x be a random sample of size n, that is, a sequence of independent and identically 

distributed random variables drawn from a distribution or a population of expected value given by 

Z = z1 + z2 = 1+ i

Imaginary Dimension 

Pmj

O

i

q  p

ip

iq

z2

z1

Real Dimension

          Prj

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 and finite variance given by 2 . Since all random variables have an equal probability to be 

chosen in the sample from the population then we have a discrete uniform probability distribution

U (Table 2):

Outcome
jx 1x 2x nx

In R
r jP

1

1
rP

n
= 2

1
rP

n
=

1
r nP

n
=

In M
m jP

1

1
1mP i

n

 
= − 

 
2

1
1mP i

n

 
= − 

 

1
1mnP i

n

 
= − 

 

In C = R + M
jz 1 1 1r mz P P= + 2 2 2r mz P P= +

n rn mnz P P= +

We have here in C = R + M: 

,     :   1j r j mjz P P j j n= +    ,

and 1 2

1 ( 1)
n

i n
z z z

n n

−
= = = = +

1 2

1

1 ( 1)
1 ( 1)

n

U j n j

j

i n
Z z z z z nz n i n

n n=

− 
 = = + + + = = + = + − 

 


A discrete uniform distribution with n equiprobable random vectors in R, M, and C

 
7.2 The General Case: A Discrete Distribution with n Equiprobable Random Vectors (A Uniform Distribution  
U with n Random Variables) 

Figure 3: 

Table 2:

The Paradigm of Complex Probability and the Central Limit Theorem
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Moreover, we can notice that: 
1 2 nz z z= = = , hence,

1 2 1 2U n nZ z z z n z n z n z= + + + = = = =

2
22 2 2 2

2 2

1 ( 1)
1 ( 1) ,   where  1U j

n
Z n z n n j n

n n

 −
 = = + = + −   

 
;

And

2 2 2 1 1
2 ( / ) 2 2(1)( 1) 2( 1)j r j m j

n
Chf n Chf P P i n n n n

n n

−  
=  = −    = −  = − − = − −  

  

        
22 2 2 21 ( 1) 2( 1) [1 ( 1)]Us Z Chf n n n n = − = + − + − = + − =

2 2
2

2 2

2 2 2 2 2

2 2 2 2 2 2 2

1

1 ( 1) 2( 1) 1 ( 1) 2( 1) [1 ( 1)]
           1

1

U

U

U

s n
Pc

n n

Z Chf n n n n n n

n n n n n n n

Pc

 = = =

+ − − − + − + − + −
= − = − = = = =

 =

Where s is an intermediary quantity used in our computation of PcU. 

Therefore, the degree of our knowledge corresponding to the resultant complex vector UZ

representing the whole uniform distribution is:

2 2

2 2

1 ( 1)
U

U

Z

Z n
DOK

n n

+ −
= = ,

and its relative chaotic factor is:

2 2

2( 1)
UZ

Chf n
Chf

n n

−
= = − ,

Similarly, its relative magnitude of the chaotic factor is:

2 2 2

2( 1) 2( 1)
U UZ Z

Chf n n
MChf Chf

n n n

− −
= = = − = .

Thus, we can verify that we have always:

2

2

2 2
1

U U U U

U

U Z Z Z Z

Z Chf
Pc DOK Chf DOK MChf

n n
= − = − = + = 1UPc =

The Paradigm of Complex Probability and the Central Limit Theorem



 

 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

15 © 2020 London Journals Press Volume 20 | Issue 5 | Compilation 1.0

What is important here is that we can notice the following fact.  Take for example:

2n = 

2

2 2

1 (2 1) 2(2 1)
0 5   and   0 5

2 2U UZ ZDOK . Chf .
+ − − −

= = = = −

4n = 

2

2 2

1 (4 1) 2(4 1)
0 625 0 5   and   0 375 0 5

4 4U UZ ZDOK . . Chf . .
+ − − −

= =  = = −  −

5n = 

2

2 2

1 (5 1) 2(5 1)
0 68 0 625   and   0 32 0 375

5 5U UZ ZDOK . . Chf . .
+ − − −

= =  = = −  −

10n = 

2

2 2

1 (10 1) 2(10 1)
0 82 0 68   and   0 18 0 32

10 10U UZ ZDOK . . Chf . .
+ − − −

= =  = = −  −

100n = 

2

2

1 (100 1)
0 9802 0 82   and

100UZDOK . .
+ −

= = 
2

2(100 1)
0 0198 0 18

100UZChf . .
− −

= = −  −

2

2

2

1 (1000 1)
1000  0 998002 0 9802   and

1000

2(1000 1)
                      0 001998 0 0198

1000

U

U

Z

Z

n DOK . .

Chf . .

+ −
=  = = 

− −
= = −  −

    

2

2

2

1 (1000000 1)
1000000  0.999998 0 998002   and

(1000000)

2(1000000 1)
                              0.000001999998 0 001998

(1000000)

U

U

Z

Z

n DOK .

Chf .

+ −
=  = = 

− −
= = −  −

We can deduce mathematically using calculus that:

2 2

2 2

1 ( 1)
lim lim lim 1

U

U

Z
n n n

Z n
DOK

n n→+ →+ →+

+ −
= = = ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and 
2 2

2( 1)
lim lim lim 0

UZ
n n n

Chf n
Chf

n n→+ →+ →+

−
= = − = .                                       

From the above, we can also deduce this conclusion:

As much as n increases, as much as the degree of our knowledge in R corresponding to the 

resultant complex vector is perfect and absolute, that means, it is equal to one, and as much as the 

chaotic factor that prevents us from foretelling exactly and totally the outcome of the stochastic

phenomenon in R approaches zero. Mathematically we state that: If n tends to infinity then the 

degree of our knowledge in R tends to one and the chaotic factor tends to zero.

Let  1 2, , , nx x x be a random sample of size n, that is, a sequence of independent and identically 

distributed random variables drawn from a distribution of expected value given by  and 

finite variance given by 2 . Suppose we are interested in the sample average which is:

1 2 n
n

x x x
S

n

+ + +
=

 
7.3  The Convergence in the CLT using Z and CPP 

The Paradigm of Complex Probability and the Central Limit Theorem
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And let 
( )( ) ( )/ /

(Convergence in )
rob n

r rob

P n S
P P CLT

   





 − 
 = =

 
 
 

Subsequently, if lim 0
UZ

n
Chf

→+
= then lim 0CLT

n
Chf

→+
= (the Chaotic factor in CLT), therefore:

   lim lim 2 lim 2 / 0CLT r m r m
n n n

Chf iP P P P i
→+ →+ →+

 = = − = since 2 1i = − hence
1

i
i

= −

0

OR

/ 0

r

m

P

P i

→


 
 →

0

OR

1 / 1 0 1

r

r m

P

P P i

→


 
 = − → − =

(Convergence in ) 0

OR

(Convergence in ) 1

rob

rob

P CLT

P CLT

→


 
 →

that means:

1) either the simulation and the random sampling have not started yet that means:

( )( ) ( )

( )

/ /
(Convergence in ) 0

                                                 0

rob n

r rob

n

rob

P n S
P P CLT

n S
P

   





 

 

 − 
 = = →

 
 
 

 −
  → 

  

2) or the CLT algorithm output and ( )nn S − have converged that means:

( )( ) ( )

( )

/ /
(Convergence in ) 1

                                                 

rob n

r rob

n

rob

P n S
P P CLT

n S
P

   





  

  

 − 
 = = →

 
 
 

 −  
  →   

   

that means also:

( )
lim sup 0

n

rob
n R

n S
P



  

  →+ 

 −  
 − =   

   

And ( ) 2(0, )nn S N − → , in other words, the random variables ( )nn S −

converge in distribution to a normal distribution 2(0, )N  , as predicted by CLT.

This is due to the fact that 0CLTChf = in only two places which are: 0n = and n→+ .

The Paradigm of Complex Probability and the Central Limit Theorem
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Additionally, if lim 1
UZ

n
DOK

→+
= then lim 1CLT

n
DOK

→+
= (the Degree of Our Knowledge in CLT),

and since 2 1Pc DOK Chf= − = from CPP, therefore:

  ( )  
22lim lim 1 1 lim lim / lim 1 2 / 1CLT CLT CLT r m r m

n n n n n
DOK Chf Chf P P i P P i

→+ →+ →+ →+ →+

  = + = + = + = − =
 

0

OR

/ 0

r

m

P

P i

→


 
 →

0

OR

1 / 1 0 1

r

r m

P

P P i

→


 
 = − → − =

(Convergence in ) 0

OR

(Convergence in ) 1

rob

rob

P CLT

P CLT

→


 
 →

that means we have reached the same conclusions as above since 1CLTDOK = in only two places 

which are: 0n = and n→+ .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, for 1n = 

2 2

2 2

1 (1 1)
1 1

1UZ CLT

Z
DOK DOK

n

+ −
= = =  =

                                  And 
2 2

2(1 1)
0 0

1UZ CLT

Chf
Chf Chf

n

− −
= = =  =

This means that we have a random experiment or sample with only one outcome or vector, hence, 

either 0rP = (always diverging) or 1rP = (always converging), that means we have respectively 

either an impossible event or a sure event in R. Consequently, we have surely the degree of our 

knowledge equal to one (perfect experiment knowledge) and the chaotic factor equal to zero (no 

chaos) since the random experiment is either respectively uncertain or certain which is absolutely 

logical.

Consequently, what we have done here is that we have proved the law of large numbers (already 

discussed in the published paper [28]) as well as the convergence in the CLT using CPP. In fact, 

as it is very well-known in the classical probability theory and statistics, the law of large numbers 

is tightly related and linked to the CLT. Here CPP comes and proves both of them in a novel and 

original way. The following figures (Figures 4 and 5) show the convergence of 
UZChf to 0 and of 

UZDOK to 1 as functions of the size n of the random sample.

The Paradigm of Complex Probability and the Central Limit Theorem
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UZChf ,
UZDOK , and UPc , as functions of n in 2D

                ChfZu = Chf / n2            

                DOKZu = |ZU|2 / n2

                PcU = 1

UZChf ,
UZDOK , and UPc , as functions of n in 3D

                ChfZu = Chf / n2            

                DOKZu = |ZU|2 / n2

                PcU = 1

Figure 4: 

Figure 5: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The following flowchart summarizes all the procedures of the proposed complex 

probability paradigm prognostic model:

                                                                                   

                                                                            

Random variables set sampling 

Calculate the random sample mean at 

each simulation cycle n

Prognostic

No

Yes

Plot all the functions for 

n = 0, N

   n ≤ N

For each sample 
size: n = 0, N

Central Limit Theorem 

simulation evaluation

Complex probability 

paradigm functions

Calculate the real convergence 

probability:  

Calculate DOK:

DOK(n) = 1 – 2×Pr(n)×[1 – Pr(n)]

Calculate Chf and MChf:

Chf(n) = – 2×Pr(n)×[1 – Pr(n)]

MChf(n) = | Chf(n) |

Calculate: Pc2(n) = DOK(n) – Chf(n)

                            = DOK(n) + MChf(n)

Calculate the real divergence 

probability:  

Input the random sample size n

Determine the simulation probability distribution 

 

VIII. Flowchart of the Complex Probability Paradigm and CLT Prognostic Model 

The Paradigm of Complex Probability and the Central Limit Theorem
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In fact, the proposed complex probability paradigm and prognostic model starts by 

determining the sample size and simulation cycles n taken from a population of observations. Then 

after determining the probability distribution taken into consideration (binomial, Poisson, 

Gaussian, Standard Normal, etc.) we apply accordingly the central limit theorem. Moreover, we 

calculate the random sample mean 
nS at each simulation cycle n where 0 n N  . Consequently, 

at each instance of n, we compute all the novel parameters of the complex probability paradigm 

(CPP) and CLT which are: rP , mP , /mP i , DOK, Chf, MChf, Pc, and Z. After reaching the boundary 

value N for the simulation we exit the loop and draw all the corresponding parameters. This will 

help us greatly to prove, to quantify, and to illustrate all the functions of the original model and to 

do as well prognosis. Knowing that this methodology will be applied throughout the whole 

following section dedicated for simulations.

Let us consider thereafter some stochastic distributions and theorems to simulate the Central 

Limit Theorem and to draw, to visualize, as well as to quantify all the CPP and prognostic 

parameters related to it. Note that all the numerical values found in the simulations of the new 

paradigm for any sample size and simulation cycles n were computed using the MATLAB version 

2020 software. We have considered for this purpose a high capacity computer system: a 

workstation computer with parallel microprocessors, a 64-Bit operating system, and a 64-GB 

RAM.

The real convergence probability:

0

( ) ( )
x

k n k

r rob

k

n
P X P X x p q

k

−

=

 
=  =  

 


            = Cumulative distribution function (CDF) of the binomial distribution.

Where

x is a special instance or occurrence of the binomial random variable X

0 : 0,1,2, ,k x k x  =

0 : 0,1,2, ,x n x n  =

1,    , 0p q p q+ = 

and 

2( )

2
1

2

k np
k n k

npq
n

p q
k npq

e


−
−− 

 
 

   if n→+

with

( )E X np= = , 2Var( )X npq= = , and Std. Deviation( ) Var( )X X npq= = =

We have 0 X n  where X = 0 corresponds to the instant before the beginning of the random 

experiment when 
0

0

( 0) 0
x

k n k

r

k

n
P X p q

k

=
−

=

 
 = = 

 
 , and X n= corresponds to the instant at the end 

of the random binomial experiment and simulation when:

0

( ) ( ) 1 1
x n

k n k n n

r

k

n
P X n p q p q

k

=
−

=

 
 = = + = = 

 
 by the binomial theorem.

IX. The Simulation of the New Paradigm 

 
9.1  The Simulation of the De Moivre–Laplace Theorem and CPP 

The Paradigm of Complex Probability and the Central Limit Theorem
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The imaginary complementary divergence probability: 

 
0 1

( ) 1 ( ) 1 ( )
x n

k n k k n k

m rob rob

k k x

n n
P X i P X x i p q iP X x i p q

k k

− −

= = +

    
= −  = − =  =    

    
 

The real complementary divergence probability:

0 1

( ) / 1 ( ) 1 ( )
x n

k n k k n k

m rob rob

k k x

n n
P X i P X x p q P X x p q

k k

− −

= = +

   
= −  = − =  =   

   
 

The complex probability and random vector:

0 0

0 1

( ) ( ) ( ) 1

                                     

x x
k n k k n k

r m

k k

x n
k n k k n k

k k x

n n
Z X P X P X p q i p q

k k

n n
p q i p q

k k

− −

= =

− −

= = +

    
= + = + −    

    

   
= +   

   

 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

0 0

2

0

( ) ( ) ( ) ( ) / 1

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

               1 2 2

x x
k n k k n k

r m

k k

r m r r r r

x
k n k k n

k

n n
DOK X Z X P X P X i p q p q

k k

iP X P X P X P X P X P X

n n
p q p q

k k

− −

= =

− −

=

      
= = + = + −      

      

= + = − − = − +

   
= − +   

   

 


2

0

x
k

k=

 
 
 


( )DOK X is equal to 1 when ( ) ( 0) 0r rP X P X=  = and when ( ) ( ) 1r rP X P X n=  =

The Chaotic Factor:

  2

2

0 0

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

             2 2

r m r r r r

x x
k n k k n k

k k

Chf X iP X P X P X P X P X P X

n n
p q p q

k k

− −

= =

= = − − = − +

    
= − +     

    
 

           

( )Chf X is null when ( ) ( 0) 0r rP X P X=  = and when ( ) ( ) 1r rP X P X n=  = .

The Magnitude of the Chaotic Factor MChf: 

  2

2

0 0

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

                 2 2

r m r r r r

x x
k n k k n k

k k

MChf X Chf X iP X P X P X P X P X P X

n n
p q p q

k k

− −

= =

= = − = − = −

    
= −     

    
 

            

( )MChf X is null when ( ) ( 0) 0r rP X P X=  = and when ( ) ( ) 1r rP X P X n=  = .

 

 

 

 

 

 

At any value of the random variable X: 0 X n  , the probability expressed in the complex 

probability set C is the following:
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc X P X P X / i Z X iP X P X

             DOK X Chf X

             DOK X MChf X

             

= + = −

= −

= +

=

                                                        

The Paradigm of Complex Probability and the Central Limit Theorem
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then, 

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc X P X P X / i P X P X Pc X= + = + − = =  = always.

Hence, the prediction of the convergence probabilities of the stochastic experiments in the set C

is permanently certain.

In the simulations, we take p = q = 0.5 and we have the following binomial distribution 

characteristics for the different values of n considered:

For n = 8, 8 0.5 4 =  = , 2 8 0.5 0.5 2 =   = 2 1.41421 = =

For n = 12, 12 0.5 6 =  = , 2 12 0.5 0.5 3 =   = 3 1.73205 = =

For n = 16, 16 0.5 8 =  = , 2 16 0.5 0.5 4 =   = 4 2 = =

For n = 32, 32 0.5 16 =  = , 2 32 0.5 0.5 8 =   = 8 2.82842 = =

For n = 50, 50 0.5 25 =  = , 2 50 0.5 0.5 12.5 =   = 12.5 3.53553 = =

For n = 100, 100 0.5 50 =  = , 2 100 0.5 0.5 25 =   = 25 5 = =

For n = 610 , 610 0.5 500000 =  = , 2 610 0.5 0.5 250000 =   = 250000 500 = =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The De Moivre-Laplace Theorem and CPP for a sample of size n = 8Figure 6: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The De Moivre-Laplace Theorem and CPP for a sample of size n = 12

The De Moivre-Laplace Theorem and CPP for a sample of size n = 50

Figure 7: 

Figure 8: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 16

Figure 9: 

Figure 10: 

The Paradigm of Complex Probability and the Central Limit Theorem
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 The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 32

The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 100

 

Figure 11: 

Figure 12: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 1000000
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The increasing convergence of the binomial distribution to the std. normal distribution 

for a sample of size n = 1000000 (Zoom In)

Figure 13: 

Figure 14: 

The Paradigm of Complex Probability and the Central Limit Theorem
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After considering the De Moivre–Laplace theorem, hence the binomial distribution, we can deduce 

a value of ( )rP X for each value of the random variable X and for each value of the random sample 

size n. Figures 6, 7, and 8 illustrate all the new prognostic model functions and prove all the 

mathematical derivations. We have computed and ploted for a special set of ( )rP X all the CPP

parameters and components and which are: Chf(X), MChf(X), DOK(X), Pc(X), Pm(X)/i, and showed 

how to calculate the correpsonding Z(X). This is achieved with an increasing value of n by taking 

into consideration the cases n = 8, 12, and 50 to illustrate the paradigm.

Furthermore, as it was verified and demonstrated in the original model, when n = 0 (before the 

random simulation beginning) and at n (when the simulation converges) then the degree of our 

knowledge (DOK) is 1 and the chaotic factor (Chf and MChf) is 0 since the stochastic effects and 

fluctuations have either not started yet or they have finished their task on the random experiment 

and simulation. We note from these figures that the DOK is maximum (DOK = 1) when absolute 

value of Chf which is MChf is minimum (MChf = 0), that means when the magnitude of the chaotic 

factor (MChf) decreases our certain knowledge (DOK) increases. Subsequently, MChf begins to 

grow during the simulation due to the intrinsic conditions thus leading to a decrease in DOK until 

they both reach 0.5 at n/2 in all possible cases. During the course of the nondeterministic and 

stochastic experiment (n > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. The 

real cumulative convergence probability 
rP and the real cumulative complementary divergence

probability Pm/i will meet with DOK and MChf also at the point (n/2, 0.5) in all possible cases also. 

With the growth of X, the Chf and MChf return to zero and the DOK returns to 1 where we attain 

the total convergence of the binomial distribution to a normal distribution as predicted by               

De Moivre–Laplace theorem and CLT (
rP = 1) as 1n  or n→+ . At this last point, and for 

large n, convergence here is definite since Pr(X) = 1 with Pc(X) = 1 permanently, so the logical 

consequence of the value DOK = 1 follows.

We note that n/2 corresponds to 
Median Mean ModeX X X= = of the distribution and which are at the 

middle of the simulations since the binomial and normal distributions considered here are totally 

symmetric, therefore the corresponding graphs are perfectly symmetric. 

Moreover, at each value of X and n and during this entire process, we can predict with certainty all 

the CPP parameters in the complex probability set C = R + M with Pc preserved as equal to one 

through a continuous compensation between DOK and Chf since 
2 1Pc DOK Chf DOK MChf Pc= − = + = = in the CPP . This compensation is from the instant   

n = 0 (at the beginning of the random sampling and simulation) where Pr(X) = 0 until the instant

of convergence n (at the end of the random sampling and simulation) where Pr(X) = 1. That means 

also that the simulation which looked to be random and nondeterministic in the set R is now 

deterministic and certain in the set C = R + M, and this after adding the contributions of M to the 

experiment happening in R and thus after removing and subtracting the chaotic factor from the 

degree of our knowledge in the equation above.

Additionally, Figures 9 to 14 show the increasing convergence probability of the binomial 

distribution to the normal (or the standard normal = ( / )  ) distribution with the increasing 

value of n by considering the values n = 8, 16, 32, 100, and 1000000, just as predicted by                 

De Moivre–Laplace theorem which is a special case of CLT that considers the binomial 

distribution for the random variable X.

 
9.1.1  The Simulations Interpretation 

The Paradigm of Complex Probability and the Central Limit Theorem
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The real convergence probability:

0

( ) ( )
!

kx

r rob

k

e
P X P X x

k

 −

=

=  =

            = Cumulative distribution function (CDF) of the Poisson distribution.

Where

x is a special instance or occurrence of the Poisson random variable X
0 : 0,1,2, ,k x k x  =

0 : 0,1,2, ,x x  + = +

For sufficiently large values of n and with a sufficiently small values of np = we have:

Binomial Poisson( ; , ) ( ; )F k n p F k np =
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, 
!

k
k n k

n e
p q

k k

 −
− 

 
 

For sufficiently large values of  and with an appropriate continuity correction we have:
2

Poisson Normal( ; ) ( ; , )F x np F x    = = =

Therefore, 

2( )

2
1

! 2

k ke

k
e

 






− −
−

And we have: ( )E X np = = = , 2Var( )X  = = , and 

Std. Deviation( ) Var( )X X = = =

We have 0 X  + where X = 0 corresponds to the instant before the beginning of the random 

experiment and simulation when 
0

0

( 0) 0
!

kx

r

k

e
P X

k

 −=

=

 = = , and 1X  (For large x or for

x →+ ) corresponds to the instant at the end of the random Poisson simulation when:
1

0

0 0 0

( 1) 1
! ! !

k k kx

r

k k k

e e
P X e e e e

k k k

 
    − − + +

− −

= = =

 = = = =  = =   after using the series properties 

from calculus.
        

The imaginary complementary divergence probability: 

 
0 1

( ) 1 ( ) 1 ( )
! !

k kx

m rob rob

k k x

e e
P X i P X x i iP X x i

k k

  − −+

= = +

 
= −  = − =  = 

 
                

The real complementary divergence probability:

0 1

( ) / 1 ( ) 1 ( )
! !

k kx

m rob rob

k k x

e e
P X i P X x P X x

k k

  − −+

= = +

= −  = − =  = 

The complex probability and random vector:

0 0

0 1

( ) ( ) ( ) 1
! !

                                     
! !

k kx x

r m

k k

k kx

k k x

e e
Z X P X P X i

k k

e e
i

k k

 

 

 

 

− −

= =

− −+

= = +

 
= + = + − 

 

= +

 

 

 
9.2  The Simulation of the Poisson Theorem and CPP 

The Paradigm of Complex Probability and the Central Limit Theorem



 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

29 © 2020 London Journals Press Volume 20 | Issue 5 | Compilation 1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Degree of Our Knowledge:

 

 

2 2

22 2

0 0

2

2

0 0

( ) ( ) ( ) ( ) / 1
! !

               1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

               1 2 2
! !

k kx x

r m

k k

r m r r r r

k kx x

k k

e e
DOK X Z X P X P X i

k k

iP X P X P X P X P X P X

e e

k k

 

 

 

 

− −

= =

− −

= =

   
= = + = + −   

   

= + = − − = − +

 
= − +  

 

 

 

                 

( )DOK X is equal to 1 when ( ) ( 0) 0r rP X P X=  = and when ( ) ( 1) 1r rP X P X=  =

The Chaotic Factor:

  2

2

0 0

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

             2 2
! !

r m r r r r

k kx x

k k

Chf X iP X P X P X P X P X P X

e e

k k

  − −

= =

= = − − = − +

 
= − +  

 
 

           

( )Chf X is null when ( ) ( 0) 0r rP X P X=  = and when ( ) ( 1) 1r rP X P X=  = .

The Magnitude of the Chaotic Factor MChf: 

  2

2

0 0

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

                 2 2
! !

r m r r r r

k kx x

k k

MChf X Chf X iP X P X P X P X P X P X

e e

k k

  − −

= =

= = − = − = −

 
= −  

 
 

                                 

( )MChf X is null when ( ) ( 0) 0r rP X P X=  = and when ( ) ( 1) 1r rP X P X=  = .

At any value of the random variable X: 0 X  + , the probability expressed in the complex 

probability set C is the following:
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc X P X P X / i Z X iP X P X

             DOK X Chf X

             DOK X MChf X

             

= + = −

= −

= +

=

                                                        

then, 

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc X P X P X / i P X P X Pc X= + = + − = =  = always.

Hence, the prediction of the convergence probabilities of the stochastic experiments in the set C

is permanently certain.

In the simulations, we have considered the following Poisson distribution characteristics:

6.7 = = , 2 6.7 = = 6.7 2.58843  = = =

10.7 = = , 2 10.7 = = 10.7 3.27108  = = =

35.7 = = , 2 35.7 = = 35.7 5.97494  = = =

For n = 8, 16, 32, 100, 1000000, we have 6.7 = = .

The Paradigm of Complex Probability and the Central Limit Theorem
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The Poisson Theorem and CPP for 6.7 =

The Poisson Theorem and CPP for 10.7 =

Figure 15: 

Figure 16: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The Poisson Theorem and CPP for 35.7 =

The increasing convergence of the Poisson distribution to the std. normal distribution 

for a sample of size n = 8 with 6.7 =

Figure 17: 

Figure 18: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the Poisson distribution to the std. normal distribution 

for a sample of size n = 16 with 6.7 =

The increasing convergence of the Poisson distribution to the std. normal distribution 

for a sample of size n = 32 with 6.7 =

Figure 19: 

Figure 20: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the Poisson distribution to the

 

std. normal distribution 

for a sample of size n

 

= 100

 

with 6.7 =

 

 
  

The increasing convergence of the Poisson distribution to the

 

std. normal distribution 

for a sample of size n

 

= 1000000

 

with 6.7 =

 

Figure 21: 

Figure 22: 

The Paradigm of Complex Probability and the Central Limit Theorem
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After considering now the Poisson distribution, we can deduce a value of ( )rP X for each value of 

the random variable X, for each value of  , and for each value of the random sample size n. 

Figures 15, 16, and 17 illustrate all the new prognostic model functions and prove all the 

mathematical derivations. We have computed and drawn for a special set of ( )rP X all the CPP

parameters and components and which are: Chf(X), MChf(X), DOK(X), Pc(X), Pm(X)/i, and showed 

how to calculate the correpsonding Z(X). This is achieved with the increasing value of  by taking 

into consideration the cases  = 6.7, 10.7, and 35.7 to illustrate the paradigm.

Furthermore, as it was proved and confirmed in the original model, when n = 0 (before the random 

simulation beginning) and at n (when the simulation converges) then the degree of our knowledge 

(DOK) is 1 and the chaotic factor (Chf and MChf) is 0 since the stochastic aspects and fluctuations 

have either not begun yet or they have completed their task on the random phenomenon and 

simulation. We note from these figures that the DOK is maximum (DOK = 1) when absolute value 

of Chf which is MChf is minimum (MChf = 0), that means when the magnitude of the chaotic 

factor (MChf) diminishes our certain knowledge (DOK) grows. Subsequently, MChf begins to 

increase during the simulation due to the intrinsic conditions thus leading to a decrease in DOK

until they both reach 0.5 at Floor( ) =   in all these cases. During the course of the 

nondeterministic and stochastic experiment (n > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 

0 < MChf ≤ 0.5. The real cumulative convergence probability 
rP and the real cumulative 

complementary divergence probability Pm/i will meet with DOK and MChf also at the point 

(
Median ModeX X = =    , 0.5) in all these cases also. With the growth of X, the Chf and MChf return 

to zero and the DOK returns to 1 where we attain the total convergence of the Poisson distribution 

to a normal distribution as predicted by the Poisson theorem and CLT (
rP = 1) as 1  , 1n 

or n→+ . At this last point, and for large  and n, convergence here is definite since Pr(X) = 1 

with Pc(X) = 1 permanently, so the logical consequence of the value DOK = 1 follows.

We note that    corresponds to 
ModeX of the distribution where ( )MeanX X E X = = = and 

1/ 3 0.02/MedianX  + −   and which are not at the middle of the simulations since the Poisson 

distribution considered is not symmetric, therefore the corresponding graphs considered here are 

skewed to the right or positively skewed before the convergence of the Poisson distribution to a 

normal distribution when it becomes perfectly symmetric.

Moreover, at each value of X, , and n and during this entire process, we can predict with certainty 

all the CPP parameters in the complex probability set C = R + M with Pc preserved as equal to 

one through a continuous compensation between DOK and Chf since 
2 1Pc DOK Chf DOK MChf Pc= − = + = = in the CPP . This compensation is from the instant   

n = 0 (at the beginning of the random sampling and simulation) where Pr(X) = 0 until the instant

of convergence n (at the end of the random sampling and simulation) where Pr(X) = 1. That means 

also that the simulation which seemed to be random and nondeterministic in the set R is now 

deterministic and certain in the set C = R + M, and this after adding the contributions of M to the 

experiment occurring in R and thus after eliminating and subtracting the chaotic factor from the 

degree of our knowledge in the equation above.

Additionally, Figures 18 to 22 show the increasing convergence probability of the Poisson

distribution to the normal (or the standard normal = ( / )  ) distribution with the increasing 

9.2.1 The Simulations Interpretation 
 

The Paradigm of Complex Probability and the Central Limit Theorem
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value of n by considering the values n = 8, 16, 32, 100, and 1000000, just as predicted by the 

Poisson theorem which is a special case of CLT that considers the Poisson distribution for the 

random variable X.

The real convergence probability is:

( )
( ) ( / )

n

r rob rob

n S
P P P

 
 

 

 −
 =   =  

  

            = Cumulative distribution function (CDF) of the 
nS distribution.

Where

( )

/

n n
n S S

n

 

 

− −
 = =

And  is a special instance or occurrence of the random variable  and it can be any real number.

The sample mean 
nS of size n is taken here from a population following a binomial distribution 

having the following characteristics:

np = , 2Variance npq= = , and Std. Deviation Variance npq= = =

We note that / n is called the standard error of the sample mean
nS .

We have:

As n approaches infinity, the random variables ( )nn S − converge in distribution to a normal

distribution 2(0, )N  , so: ( ) 2(0, )nn S N − → .

Or we can write for every real number  :

( )
lim ( ) lim ( / ) lim

n

r rob rob
n n n

n S
P P P

  
 

  →+ →+ →+

 −  
 =   =  =   

   

   

where ( ) is the standard normal CDF evaluated at  .

Accordingly, and since the distribution of  is centered and reduced, then for large n or for
n→+ we have:

( ) 0E  = , Var( ) 1 = , and Std. Deviation( ) Var( ) 1 1 =  = =

 

 

 

 

 

 

 

 

We have −  + where n = 0 corresponds to the instant before the beginning of the random 

sampling when ( ) 0rP  = , and n corresponds to the instant at the end of the random sampling and 

simulation when ( ) 1rP  = .
        

The imaginary complementary divergence probability: 

 
( )

( )

( ) 1 ( / ) 1

         ( / )

n

m rob rob

n

rob rob

n S
P i P i P

n S
iP iP

 
 

 

 
 

 

  −
 = −   = −   

    

 −
=   =  

  

              

 
9.3   The Simulation of the CLT 

 
9.3.1  The Simulation of the CLT and CPP 

The Paradigm of Complex Probability and the Central Limit Theorem



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The real complementary divergence probability:

( )

( )

( ) / 1 ( / ) 1

             ( / )

n

m rob rob

n

rob rob

n S
P i P P

n S
P P

 
 

 

 
 

 

 −
 = −   = −  

  

 −
=   =  

  

The complex probability and random vector:

( ) ( )

( ) ( )

( ) ( ) ( ) 1

                                   

n n

r m rob rob

n n

rob rob

n S n S
Z P P P i P

n S n S
P iP

  

   

  

   

    − −
 =  +  =  + −     

        

   − −
=  +    

      

The Degree of Our Knowledge:

 

( ) ( )

 

( )

22 2

2 2

2

( ) ( ) ( ) ( ) /

               = 1

               =1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

              1 2

r m

n n

rob rob

r m r r r r

n

rob

DOK Z P P i

n S n S
P P

iP P P P P P

n S
P

  

   

 



 =  =  + 

      − −
 + −       

            

+   = −  −  = −  + 

−
= − 

( )
2

2
n

rob

n S
P

 

  

    −
+     

        

                 

( )DOK  is equal to 1 when ( ) ( 0) 0r rP P n = = = and when ( ) ( ) 1r rP P n = = that means at the 

end of the simulation.
 

 

 

 

 

 

 

 

 

 

 

The Chaotic Factor:

 

( ) ( )

2

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

            2 2

r m r r r r

n n

rob rob

Chf iP P P P P P

n S n S
P P

  

   

 =   = −  −  = −  + 

    − −
= −  +     

        

           

( )Chf  is null when ( ) ( 0) 0r rP P n = = = and when ( ) ( ) 1r rP P n = = that means at the end of 

the simulation.

The Magnitude of the Chaotic Factor MChf: 

 

( ) ( )

2

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

                2 2

r m r r r r

n n

rob rob

MChf Chf iP P P P P P

n S n S
P P

  

   

 =  = −   =  −  =  − 

    − −
=  −     

        

                                 

( )MChf  is null when ( ) ( 0) 0r rP P n = = = and when ( ) ( ) 1r rP P n = = that means at the end 

of the simulation.
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The Paradigm of Complex Probability and the Central Limit Theorem
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At any value of the random variable : − + and for any value of the sample size n, 

the probability expressed in the complex probability set C is the following:
22 2( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc P P / i Z iP P

             DOK Chf

             DOK MChf

             

 =  +  =  −  

=  − 

=  + 

=

                                                        

then, 

 
22 2 2( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc P P / i P P Pc =  +  =  + −  = =   = always.

Hence, the prediction of the convergence probabilities of the stochastic experiments in the set C

is permanently certain.

In the simulations, we take p = q = 0.5 and we have considered the following binomial distribution 

characteristics:

For n = 4, 4 0.5 2 =  = , 2 4 0.5 0.5 1 =   = 1 1 = =

For n = 8, 8 0.5 4 =  = , 2 8 0.5 0.5 2 =   = 2 1.41421 = =

For n = 16, 16 0.5 8 =  = , 2 16 0.5 0.5 4 =   = 4 2 = =

For n = 30, 30 0.5 15 =  = , 2 30 0.5 0.5 7.5 =   = 7.5 2.73861... = =

For n = 44, 44 0.5 22 =  = , 2 44 0.5 0.5 11 =   = 11 3.31662 = =

For n = 100, 100 0.5 50 =  = , 2 100 0.5 0.5 25 =   = 25 5 = =

For n = 1000 , 1000 0.5 500 =  = , 2 1000 0.5 0.5 250 =   = 250 15.81138... = =

For n = 10000, 10000 0.5 5000 =  = , 2 10000 0.5 0.5 2500 =   = 2500 50 = =

The random variable ( ) /nn S   = − in CLT and CPP for n = 8Figure 23: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The random variable ( ) /nn S   = − in CLT and CPP for n = 16
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The random variable ( ) /nn S   = − in CLT and CPP for n = 44

Figure 24: 

Figure 25: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The random variable ( ) /nn S   = − in CLT and CPP for n = 100
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The random variable ( ) /nn S   = − in CLT and CPP for n = 1000

Figure 26: 

Figure 27: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the probability distribution in CLT to the std. normal 

distribution and CPP for a sample of size n = 8

The increasing convergence of the probability distribution in CLT to the std. normal 

distribution and CPP for a sample of size n = 16

Figure 28: 

Figure 29: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the probability distribution in CLT to the std. normal 

distribution and CPP for a sample of size n = 44
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The increasing convergence of the probability distribution in CLT to the std. normal 

distribution and CPP for a sample of size n = 100

Figure 30: 

 

 
Figure 31: 

The Paradigm of Complex Probability and the Central Limit Theorem
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 The increasing convergence of the probability distribution in CLT to the std. normal 

distribution and CPP for a sample of size n = 1000

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The increasing convergence of the probability distribution in CLT to the std. normal 

distribution for a sample of size n = 4

Figure 32: 

Figure 33: 

The Paradigm of Complex Probability and the Central Limit Theorem



 

 

 

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

43 © 2020 London Journals Press Volume 20 | Issue 5 | Compilation 1.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 The increasing convergence of the probability distribution in CLT to the std. normal 

distribution for a sample of size n = 8

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The increasing convergence of the probability distribution in CLT to the std. normal 

distribution for a sample of size n = 30

Figure 34: 

Figure 35: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of the probability distribution in CLT to the std. normal 

distribution for a sample of size n = 10000
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The increasing convergence of the probability distribution in CLT to the std. normal 

distribution for a sample of size n = 10000 (Zoom In)

Figure 36: 

Figure 37: 

The Paradigm of Complex Probability and the Central Limit Theorem
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After considering here the probability distribution of the random variable 
/

nS

n





−
 = , we can 

deduce a value of ( )rP  for each value of the random variable  and for each value of the random 

sample size n. Figures 23 to 32 illustrate all the new prognostic model functions and prove all the 

mathematical derivations. We have computed and ploted for a special set of ( )rP  all the CPP

parameters and components and which are: Chf( ), MChf( ), DOK( ), Pc( ), Pm( )/i, and 

showed how to calculate the correpsonding Z( ). This is achieved with the increasing value of n

by taking into consideration the cases n = 8, 16, 44, 100, and 1000 to illustrate the paradigm.

Furthermore, as it was shown and established in the original model, when n = 0 (before the random 

simulation beginning) and at n (when the simulation converges) then the degree of our knowledge 

(DOK) is 1 and the chaotic factor (Chf and MChf) is 0 since the stochastic influences and variations

have either not commenced yet or they have terminated their job on the random experiment and 

simulation. We note from these figures that the DOK is maximum (DOK = 1) when absolute value 

of Chf which is MChf is minimum (MChf = 0), that means when the magnitude of the chaotic 

factor (MChf) decreases our certain knowledge (DOK) increases. Subsequently, MChf begins to 

grow during the simulation due to the intrinsic conditions thus leading to a decrease in DOK until 

they both reach 0.5 at n/2 in all possible cases. During the course of the nondeterministic and 

stochastic phenomenon (n > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. The 

real cumulative convergence probability 
rP and the real cumulative complementary divergence 

probability Pm/i will meet with DOK and MChf also at the point ( / 2n , 0.5) in all possible cases 

also. With the increase of  , the Chf and MChf return to zero and the DOK returns to 1 where we 

attain the total convergence of the probability distribution of  to a normal distribution as 

predicted by CLT (
rP = 1) as 1n  or n→+ . At this last point, and for large n, convergence

here is definite since Pr( ) = 1 with Pc( ) = 1 permanently, so the logical consequence of the 

value DOK = 1 follows.

We note that n/2 corresponds to 
Median Mean Mode = = of the random distribution and which are

at the middle of the simulations since the binomial and normal distributions considered here are

totally symmetric, therefore their corresponding graphs are perfectly symmetric. 

Moreover, at each value of  and n and during this entire process, we can predict with certainty 

all the CPP parameters in the complex probability set C = R + M with Pc preserved as equal to 

one through a continuous compensation between DOK and Chf since 
2 1Pc DOK Chf DOK MChf Pc= − = + = = in the CPP . This compensation is from the instant   

n = 0 (at the beginning of the random sampling and simulation) where Pr( ) = 0 until the instant

of convergence n (at the end of the random sampling and simulation) where Pr( ) = 1. That means 

also that the simulation which is considered to be stochastic and random in the set R is now 

deterministic and certain in the set C = R + M, and this after adding the contributions of M to the 

experiment happening in R and thus after removing and subtracting the chaotic factor from the 

degree of our knowledge in the equation above.

Additionally, Figures 33 to 37 show the increasing convergence probability of the random

distribution to the normal (or the standard normal = ( / )  ) distribution with the increasing 

value of n by considering the values n = 4, 8, 30, and 10000, just as predicted by CLT that considers

here the random variable  .

 
9.3.1.1  The Simulations Interpretation 

The Paradigm of Complex Probability and the Central Limit Theorem
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The real convergence probability in CLT:

Let now

( )( ) ( )

c( ) (Convergence in )

/ /( / )
           

r rob

rob n
rob

P P CLT

P n SP     

 

 

 =

 −    = =
   

    
   

We can write for every real number  and by the CLT:

( )
lim ( ) lim ( / ) lim

n

r rob rob
n n n

n S
P P P

  
 

  →+ →+ →+

 −  
 =   =  =   

   

   

where ( ) is the standard normal CDF evaluated at  .

( )( ) ( )

clim ( ) lim (Convergence in )

/ /( / )
                       lim lim 1

r rob
n n

rob n
rob

n n

P P CLT

P n SP     

 

 

→+ →+

→+ →+

  =

   
 −         = = =   

          
         

( )
lim sup 0

n

rob
n R

n S
P



  

  →+ 

 −  
  − =   

   

We have −  + where n = 0 corresponds to the instant before the beginning of the random 

sampling when 
c( ) ( ) 0r rP P =  = , and n corresponds to the instant at the end of the random 

sampling and simulation when 
c( ) ( ) 1r rP P =  = .

Moreover, the value of the random difference 
( )n

rob

n S
P

  

  

 −  
 −   

   

in the simulation 

is null at two instances: when n = 0 (the instant before the beginning of the simulation) and at n

(the instant at the end of the simulation).

        

The imaginary complementary divergence probability in CLT: 

 
( )( ) ( )

c c

/ /( / )
( ) 1 ( ) 1 1

rob n
rob

m r

P n SP
P i P i i

    

 

 

   
 −           = −  = − = −

                   

              

The real complementary divergence probability in CLT:

( )( ) ( )
c c

/ /( / )
( ) / 1 ( ) 1 1

rob n
rob

m r

P n SP
P i P

    

 

 

 −     = −  = − = −
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9.3.2  The Probability of Convergence in CLT and CPP 

The Paradigm of Complex Probability and the Central Limit Theorem
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The complex probability and random vector in CLT:

c c c

( / ) ( / )
( ) ( ) ( ) 1rob rob

r m

P P
Z P P i

   

 

 

   
      
    =  +  = + −

                    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Degree of Our Knowledge in CLT:

 

 

22 2

c c c c

2 2

2

c c c c c c

( ) ( ) ( ) ( ) /

( / ) ( / )
               = 1

               =1 2 ( ) ( ) 1 2 ( ) 1 ( ) 1 2 ( ) 2 ( )

              

r m

rob rob

r m r r r r

DOK Z P P i

P P

iP P P P P P

   

 

 

 =  =  + 

   
      
   + −

                   

+   = −  −  = −  + 

2

( / ) ( / )
1 2 2rob robP P   

 

 

   
      
   = − +

                   

                 

c( )DOK  is equal to 1 when c( ) ( 0) 0r rP P n = = = and when c( ) ( ) 1r rP P n = = that means at 

the end of the simulation.

The Chaotic Factor in CLT:

  2

c c c c c c c

2

( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( / ) ( / )
             2 2

r m r r r r

rob rob

Chf iP P P P P P

P P   

 

 

 =   = −  −  = −  + 

   
      
   = − +

                   

           

c( )Chf  is null when c( ) ( 0) 0r rP P n = = = and when c( ) ( ) 1r rP P n = = that means at the end 

of the simulation.

The Magnitude of the Chaotic Factor MChf in CLT: 

  2

c c c c c c c c

2

( ) ( ) 2 ( ) ( ) 2 ( ) 1 ( ) 2 ( ) 2 ( )

( / ) ( / )
                 2 2

r m r r r r

rob rob

MChf Chf iP P P P P P

P P   

 

 

 =  = −   =  −  =  − 

   
      
   = −

                   

            

c( )MChf  is null when c( ) ( 0) 0r rP P n = = = and when c( ) ( ) 1r rP P n = = that means at the 

end of the simulation.

At any value of the random variables
c and : − + , and for any value of the sample 

size n, the probability in CLT expressed in the complex probability set C is the following:

The Paradigm of Complex Probability and the Central Limit Theorem
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22 2

c c c c c c

c c

c c

( ) [ ( ) ( ) ] ( ) 2 ( ) ( )

( ) ( )

( ) ( )

1

r m r mPc P P / i Z iP P

             DOK Chf

             DOK MChf

             

 =  +  =  −  

=  − 

=  + 

=

then, 

 
22 2 2

c c c c c c( ) [ ( ) ( ) ] ( ) [1 ( )] 1 1 ( ) 1r m r rPc P P / i P P Pc =  +  =  + −  = =   = always.

Hence, the prediction of the convergence probabilities of the stochastic experiments in the set C
is permanently certain.

The increasing convergence of  ( )c( ) ( / ) / /r robP P     =   to 1 in CLT and 

CPP for a sample of size n = 4

Figure 38: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of ( )( / ) /robP     − to 0 in CLT

for a sample of size n = 4

The increasing convergence of ( )c( ) ( / ) / /r robP P     =   to 1 in CLT and 

CPP for a sample of size n = 8

Figure 39: 

Figure 40: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of ( )( / ) /robP     − to 0 in CLT

for a sample of size n = 8

The increasing convergence of ( )c( ) ( / ) / /r robP P     =   to 1 in CLT and 

CPP for a sample of size n = 16

Figure 41: 

Figure 42: 

The Paradigm of Complex Probability and the Central Limit Theorem
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The increasing convergence of ( )( / ) /robP     − to 0 in CLT

for a sample of size n = 16

After considering at this point the random variable 
c having a probability distribution of the form

( )c( ) ( / ) / /r robP P     =   , we can deduce a value of 
c( )rP  for each value of the random 

variables 
c and  : − + and for each value of the random sample size n. Figures 38, 

40, and 42 illustrate all the new prognostic model functions and prove all the mathematical 

derivations. We have computed and drawn for a special set of 
c( )rP  all the CPP parameters and 

components and which are: Chf(
c ), MChf(

c ), DOK(
c ), Pc(

c ), Pm(
c )/i, and showed how 

to calculate the correpsonding Z(
c ). This is achieved with the increasing value of n by taking 

into consideration the cases n = 4, 8, and 16 to illustrate the paradigm.

Furthermore, as it was demonstrated and proved in the original model, when n = 0 (before the 

random simulation beginning) and at n (when the simulation converges) then the degree of our 

knowledge (DOK) is 1 and the chaotic factor (Chf and MChf) is 0 since the stochastic aspects and 

fluctuations have either not begun yet or they have ended their task on the nondeterministic

experiment and simulation. We note from these figures that the DOK is maximum (DOK = 1) 

when absolute value of Chf which is MChf is minimum (MChf = 0), that means when the magnitude 

of the chaotic factor (MChf) decreases our certain knowledge (DOK) increases. Subsequently, 

MChf begins to grow during the simulation due to the intrinsic conditions thus leading to a decrease 

in DOK until they both reach 0.5 at / 2n in all possible cases. During the course of the stochastic 

and random experiment (n > 0) we have: 0.5 ≤ DOK < 1, –0.5 ≤ Chf < 0, and 0 < MChf ≤ 0.5. The 

real cumulative convergence probability 
rP and the real cumulative complementary divergence 

probability Pm/i will meet with DOK and MChf also at the point ( / 2n , 0.5) in all possible also. 

With the increase of  and hence of
c , the Chf and MChf return to zero and the DOK returns to 
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1 where we attain the total convergence of ( )c( ) ( / ) / /r robP P     =   distribution to one

as predicted by CLT (
rP = 1) as 1n  or n→+ . At this last point, and for large n, convergence

here is definite since Pr( c ) = 1 with  Pc(
c ) = 1 permanently, so the logical consequence of the 

value DOK = 1 follows.

We note that n/2 corresponds to 
c c c( ) ( ) ( )Median Mean Mode =  =  of the random ratio distribution 

and which are at the middle of the simulations since the normal distribution considered here is

totally symmetric, therefore the corresponding graphs are perfectly symmetric. 

Additionally, Figures 39, 41, and 43 show the increasing convergence probability of the random 

difference distribution ( )( / ) /robP     − to zero with the increasing value of n by 

considering the values of the sample size n = 4, 8, and 16, just as predicted by CLT for the random 

variable  .

Moreover, at each value of
c ,  , and n and during this entire process, we can predict with 

certainty all the CPP parameters in the complex probability set C = R + M with Pc preserved as 

equal to one through a continuous compensation between DOK and Chf since 
2 1Pc DOK Chf DOK MChf Pc= − = + = = in the CPP . This compensation is from the instant   

n = 0 (at the beginning of the random sampling and simulation) where Pr( c ) = 0 until the instant

of convergence n (at the end of the random sampling and simulation) where Pr( c ) = 1. That 

means also that the simulation which is considered to be stochastic and random in the set R is now 

certain and deterministic in the set C = R + M, and this after taking into account the contributions 

of M to the experiment occurring in R and thus after eliminating and subtracting the chaotic factor 

from the degree of our knowledge in the equation above.

Hence and finally, what is crucial and original here, is that we have illustrated using all the 

simulations and graphs the convergence in CLT using CPP axioms and tools as proved in section

7.3.

In the current research work, the original extended Kolmogorov model of eight axioms

(EKA) was connected and applied to the classical Central Limit Theorem. Thus, a tight link 

between CLT and the novel paradigm was executed. Consequently, the model of "Complex 

Probability” was more expanded beyond the scope of my fourteen earlier research studies on this 

subject. 

Additionally, and in the novel CPP paradigm, the probabilities of convergence and divergence in

the CLT procedure that correspond to each iteration cycle or sample size n have been determined 

 

 

 

 

 

in the three sets of probabilities which are R, M, and C by rP , mP , and Pc respectively.

Accordingly, at each instance of n, the novel CLT and CPP parameters rP , mP , /mP i , DOK, Chf, 

MChf, Pc, and Z are perfectly and surely predicted in the set of complex probabilities C = R + M
with Pc kept as equal to 1 continuously and permanently. Also, using all these shown simulations 

and obtained graphs all over the entire research paper, we can visualize and quantify both the 

certain knowledge (expressed by DOK and Pc) and the system chaos and stochastic influences and 

effects (expressed by Chf and MChf) of CLT. Furthermore, it is important to state here that we 

have proved CLT in a novel and original way and this by using CPP axioms and tools. This is 

X. Conclusion and Perspectives 
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definitely very wonderful, fruitful, and fascinating and demonstrates once again the advantages of 

extending the five axioms of probability of Kolmogorov and thus the benefits and novelty of this 

original theory in applied mathematics and prognostics that can be called verily: "The Complex 

Probability Paradigm".

As a prospective and future challenges and research, we intend to more develop the novel

conceived prognostic paradigm and to apply it to a diverse set of nondeterministic events like for 

other stochastic phenomena as in the classical theory of probability and in stochastic processes. 

Additionally, we will implement CPP more to the field of prognostic in engineering and also to 

the problems of random walk which have huge consequences when applied to economics, to

chemistry, to physics, to pure and applied mathematics.
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