Two Ways to Prove Goldbach Conjecture

Xin Wang

Chinese Academy of Sciences

ABSTRACT

The Goldbach Conjecture is a recalcitrant problem in mathematics. Here the author tried to prove the Conjecture in two ways, hoping this result will accelerate related research.

Keywords: prime number, Goldbach Conjecture.

Classification: For Code: 019999
Language: English

[^0]
Two Ways to Prove Goldbach Conjecture

Xin Wang

ABSTRACT

The Goldbach Conjecture is a recalcitrant problem in mathematics. Here the author tried to prove the Conjecture in two ways, hoping this result will accelerate related research.

Keywords: prime number, goldbach conjecture.
Author: State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Nanjing 210008, China *email: xinwang@nigpas.ac.cn

I. INTRODUCTION

The Goldbach Conjecture states that every even number greater than 2 is a sum of two primes. This conjecture has been confirmed to be true for all evens up to 6×10^{16} [1]. However, theoretically, this Conjecture remains unproven to this date despite tedious efforts $[1 ; 2 ; 3 ; 4]$. Here I tried to give two proofs for the Conjecture.

Proof 1:
Theorem 1. If all primes smaller than or equal to \sqrt{a} cannot divide a natural number a exactly, then a is a prime.

Proof: Suppose a is a composite.
Since a is a composite, a can be expressed as a product of two natural numbers, namely, $a=b \times c$ (b and c are natural numbers).

If $b=c$, then $b=c=\sqrt{a}$. This contradicts the premise of the theorem.
If $b \neq c$, one of b and c must be smaller than \sqrt{a}. This contradicts the premise of the theorem, too.
Thus the above supposition (a is a composite) cannot be true, therefore a must be a prime.
This completes the proof of Theorem 1.

Denotation:

a is a natural number greater than 3 .
p is an odd prime smaller than a.
P is a set of all p.
n is the number of elements in P .
p_{i} is the $i_{\text {th }}$ prime.
p_{t} is the greatest prime that is smaller than $\sqrt{2 a}$.
Theorem 2. Any natural number greater than 3 is the average of at least one pair of primes.

According to Theorem 1 , if all prime factors smaller than or equal to $\sqrt{2 a}$ cannot divide $2 a$ exactly, $2 a$ is a prime. Therefore whether $2 a-p(<2 a)$ being a prime can be sufficiently determined by dividing it
using all odd primes smaller than $\sqrt{2 a}$ as all values of $2 a-p$ are odd. Theoretically, the minimal probability of numbers in the range $(a, 2 a)$ is calculated as

$$
\begin{align*}
\operatorname{prob}(2 a)= & \frac{2}{3} \times \frac{4}{5} \times \frac{6}{7} \times \frac{10}{11} \times \frac{12}{13} \times \frac{16}{17} \times \cdots \cdots \cdots \times \frac{p_{\mathrm{t}}-1}{p_{\mathrm{t}}} \\
= & \frac{2}{3} \times \frac{3}{4} \times \frac{4}{5} \times \frac{5}{6} \times \frac{6}{7} \times \frac{7}{8} \times \frac{8}{9} \times \frac{9}{10} \times \frac{10}{11} \times \frac{11}{12} \times \frac{12}{13} \times \frac{13}{14} \times \frac{14}{15} \times \frac{15}{16} \times \frac{16}{17} \times \cdots \cdots \cdots \times \frac{p_{\mathrm{t}}-2}{p_{\mathrm{t}}-1} \times \frac{p_{\mathrm{t}}-1}{p_{\mathrm{t}}} \\
& \times \frac{4}{3} \times \frac{6}{5} \times \frac{8}{7} \times \frac{9}{8} \times \frac{10}{9} \times \frac{12}{11} \times \frac{14}{13} \times \frac{15}{14} \times \frac{16}{15} \times \cdots \cdots \cdots \times \frac{p_{\mathrm{t}}-1}{p_{\mathrm{t}}-2} \\
= & \frac{2}{p_{\mathrm{t}}} \times \frac{4}{3} \times \frac{6}{5} \times \frac{8}{7} \times \frac{9}{8} \times \frac{10}{9} \times \frac{12}{11} \times \frac{14}{13} \times \frac{15}{14} \times \frac{16}{15} \times \cdots \cdots \times \frac{p_{\mathrm{t}}-1}{\boldsymbol{p}_{\mathrm{t}}-2} \\
= & \frac{2}{p_{\mathrm{t}}} \times \frac{4}{3} \times \frac{6}{5} \times \frac{10}{7} \times \frac{12}{11} \times \frac{16}{13} \times \cdots \cdots \times \frac{p_{\mathrm{t}}-1}{p_{\mathrm{t}}} \\
= & \frac{2}{p_{\mathrm{t}}} \times \frac{5-1}{3} \times \frac{7-1}{5} \times \frac{11-1}{7} \times \frac{13-1}{11} \times \frac{17-1}{13} \times \cdots \cdots \cdot \times \frac{p_{\mathrm{t}}-1}{p_{\mathrm{t}-1}} \\
= & \frac{2}{p_{\mathrm{t}}} \times \prod_{\mathrm{i}=2}^{\mathrm{t}-1} \frac{p_{\mathrm{t}}}{p_{\mathrm{i}}}-1
\end{align*}
$$

As the number of different values of $2 a-p$ in (a, 2a) is equal to the number of elements in P (namely, n), the minimal number of primes in form of $2 a-p$ can be under-calculated as following, as prob($2 a-p$) $>\operatorname{prob}(2 a)$ since probability of primes is increasingly reduced as the range extends and $2 a>2 a-p$.

$$
n \times \operatorname{prob}(2 a-p)>n \times \operatorname{prob}(2 a)=\frac{2 n}{p_{\mathrm{t}}} \times \prod_{\mathrm{i}=2}^{\mathrm{t}-1} \frac{p_{\mathrm{i}+1}-1}{p_{\mathrm{i}}}
$$

In Formula 2, $n=\pi(a)=O(a / \ln a), P_{\mathrm{t}}=O(\sqrt{2 a})$, so $\frac{2 n}{p_{\mathrm{t}}}$ increases with a, and $\prod_{t=1}^{n} \frac{p_{n}-1}{p_{i}}$ monotonously increases regardless of the value of a. So it is easy to conclude that the above estimation in Formula 2 generally increases with a.

Despite such underestimations, it is clear that the estimated numbers of primes in form of ($2 a-p$) in ($a, 2 a$) are always greater than 1 when $a>5$ and continue to increase, meaning that, there are at least one pair of primes, p and $2 a-p$, with their average equal to a, as shown in Figure 1. This completes proof 1 of Theorem 2.

Table 1: Although it may be as small as a fraction of 1 in the second example, the estimated numbers of primes in form of $2 a-p$ in (a, 2a) are always greater than 1 in other examples, indicating that there are at least one pair of primes, p and $2 a-p$, with their average equal to every natural number a.

a	$2 a$	$\sqrt{2 a}$	n	p_{t}	Minimal calculated probability of being primes of numbers in form $(2 a-p)$	estimated number of primes in form of $(2 a-p)$	actual number of primes in $(a, 2 a)$	annotations
4	8	2.8	1	2	1	1	2	Underestimated
5	10	3.2	1	3	0.89	0.89	1	Underestimated
6	12	3.5	2	3	0.89	1.78	2	Underestimated

[^1]| 7 | 14 | 3.7 | 2 | 3 | 0.89 | 1.78 | 2 | Underestimated |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 16 | 4 | 3 | 3 | 0.89 | 2.67 | 2 | Overestimated |
| 9 | 18 | 4.2 | 3 | 3 | 0.89 | 2.67 | 3 | Underestimated |
| 10 | 20 | 4.5 | 3 | 3 | 0.89 | 2.67 | 4 | Underestimated |
| 11 | 22 | 4.7 | 3 | 3 | 0.89 | 2.67 | 3 | Underestimated |
| 12 | 24 | 4.9 | 4 | 3 | 0.89 | 3.56 | 4 | Underestimated |
| 13 | 26 | 5.1 | 4 | 5 | 0.64 | 2.56 | 3 | Underestimated |
| 14 | 28 | $5 \cdot 3$ | 5 | 5 | 0.64 | 3.2 | 3 | Overestimated |
| 15 | 30 | 5.5 | 5 | 5 | 0.64 | 3.2 | 4 | Underestimated |
| 16 | 32 | 5.7 | 5 | 5 | 0.64 | 3.2 | 5 | Underestimated |
| 17 | 34 | 5.8 | 5 | 5 | 0.64 | 3.2 | 4 | Underestimated |
| 18 | 36 | 6 | 6 | 5 | 0.64 | 3.84 | 4 | Underestimated |
| 19 | 38 | 6.2 | 6 | 5 | 0.64 | 3.84 | 4 | Underestimated |
| 20 | 40 | 6.3 | 7 | 5 | 0.64 | 4.48 | 4 | Overestimated |
| 21 | 42 | 6.5 | 7 | 5 | 0.64 | 4.48 | 5 | Underestimated |
| 22 | 44 | 6.6 | 7 | 5 | 0.64 | 4.48 | 6 | Underestimated |
| 23 | 46 | 6.8 | 7 | 5 | 0.64 | 4.48 | 5 | Underestimated |
| 24 | 48 | 6.9 | 8 | 5 | 0.64 | 5.12 | 6 | Underestimated |
| 25 | 50 | 7.1 | 8 | 7 | 0.52 | 4.16 | 6 | Underestimated |
| 50 | 100 | 10 | 14 | 7 | 0.52 | 7.28 | 10 | Underestimated |
| 100 | 200 | 14.1 | 24 | 13 | 0.472 | 11.3 | 21 | Underestimated |
| 200 | 400 | 20 | 45 | 19 | 0.396 | 17.8 | 32 | Underestimated |
| 300 | 600 | 24.5 | 61 | 23 | 0.398 | 36.2 | 47 | Underestimated |
| 400 | 800 | 28.3 | 77 | 23 | 0.398 | 30.7 | 61 | Underestimated |
| 500 | 1000 | 31.6 | 94 | 31 | 0.355 | 33.4 | 73 | Underestimated |
| 600 | 1200 | 34.6 | 108 | 31 | 0.355 | 38.3 | 87 | Underestimated |
| 700 | 1400 | 37.4 | 124 | 37 | 0.322 | 39.9 | 97 | Underestimated |
| 800 | 1600 | 40 | 138 | 37 | 0.322 | 44.4 | 112 | Underestimated |
| 900 | 1800 | 42.4 | 153 | 41 | 0.297 | 45.4 | 124 | Underestimated |
| 1000 | 2000 | 44.7 | 167 | 43 | 0.303 | 50.6 | 135 | Underestimated |
| 2000 | 4000 | 63.2 | 302 | 61 | 0.267 | 80.6 | 247 | Underestimated |
| 3000 | 6000 | 77.5 | 429 | 73 | 0.257 | 110.3 | 353 | Underestimated |
| 4000 | 8000 | 89.4 | 549 | 89 | 0.25 | 137.3 | 457 | Underestimated |
| 5000 | 10000 | 100 | 668 | 97 | 0.236 | 157.7 | 560 | Underestimated |
| 6000 | 12000 | 109.5 | 782 | 109 | 0.227 | 177.5 | 655 | Underestimated |
| 7000 | 14000 | 118.3 | 899 | 113 | 0.244 | 219.4 | 752 | Underestimated |
| 8000 | 16000 | 126.5 | 1006 | 113 | 0.244 | 245.5 | 855 | Underestimated |
| 9000 | 18000 | 134.2 | 1116 | 131 | 0.227 | 253.3 | 947 | Underestimated |
| 10000 | 20000 | 141.4 | 1228 | 139 | 0.229 | 281.2 | 1033 | Underestimated |
| 100000 | 200000 | 447.2 | 9591 | 443 | 0.152 | 1457.8 | 8392 | Underestimated |
| $\begin{array}{\|c\|} \hline 1000 \\ 000 \end{array}$ | $\begin{array}{\|c\|} \hline 20000 \\ 00 \end{array}$ | 1414.2 | 78497 | 1409 | 0.1283 | 10071.1 | 70435 | Underestimated |
| $\begin{array}{\|l\|} \hline 1000 \\ 0000 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 20000 \\ 000 \end{array}$ | 4472.1 | 664578 | 4463 | 0.1100655 | 73147.1 | 606028 | Underestimated |
| $\left.\begin{gathered} 1000 \\ 00000 \end{gathered} \right\rvert\,$ | $\begin{gathered} 20000 \\ 0000 \end{gathered}$ | 14142.1 | 5761454 | 14107 | 0.09677885 | 557586.9 | 5317481 | Underestimated |

Figure 1: Every asterisk is the apex of an isosceles triangle, the left and right base angles are two primes, while base's midpoint is a natural number that is the averages of the two primes. The above rules applies for every natural number ≥ 4.

Proof 2:
Case 1. When $X_{\mathrm{n}}=30$

Figure 2: In the middle, odd primes smaller than 30 are plotted on an axis. Above the axis, six primes are paired and have sums equal to 30 . Below the axis, even differences ranging from 2 to 26 are connected to their related primes.

Figure 3: The sum of two primes, P_{x} and 13, may be decreased or increased by the difference between two primes through replacing the latter number (13) with another prime smaller or greater than it. If putting P_{x} and 13 together is termed as pairing, then replacing 13 in the pair with a different prime can be termed as re-pairing. Such re-pairing generates a sum different than the original one.

As proven previously [5], a super product of a prime tends to collect more prime pairs with sums equal to itself. $X_{4}=2 \times 3 \times 5=30$ [6], is equal to the sums of three different pairs of primes (Figure 2). For example, 7 and 23 constitute a prime pair that has a sum of 30.23 , a half of the pair, is connected with seven different even differences, including 4, 6, 10, 12, 16, 18, and 20 in Figure 2. Such connections imply that seven different even sums including $26,24,20,18,14,12$ and 10 can be obtained by replacing 23 with primes including $19,17,13,11,7,5$, and 3 , respectively, while the other half of the pair, 7 , remains static. In the meantime, 7 , the other half of the pair, is connected with six different even differences, including $2,4,6,10,12$, and 22 . Such connections imply that six different even sums including $28,34,36,40,42$, and 52 can be obtained by replacing 7 with primes including $5,11,13,17$, 19 , and 29 , respectively, while the other half of the pair, 23 , remains static.

Table 1: The differences of primes 7 and 11 from greater primes in Figure 2 constitute a consecutive even array ranging from 2 to 12 .

Prime	Differences	Annotation
7	$4,6,10,12,16,22$	interrupted array
11	$2,6,8,12,18$	interrupted array
Summary of all differences	$2,4,6,8,10,12$	consecutive array

The existence of such a consecutive even difference array ranging from 2 to 12 implies that every evens in $[30,42]$ can be expressed as sums of two primes in Figure 2, after re-pairing demonstrated in Figure 3.

Table 2: The differences of primes 23 and 19 from smaller primes in Figure 2 constitute a consecutive even array ranging from 2 to 20 .

Prime	Differences	Annotation
23	$4,6,10,12,16,18,20$	interrupted array
19	$2,6,8,10,12,14$	interrupted array
Summary	$2,4,6,8,10,12,14,16,18,20$	consecutive array

Two Ways to Prove Goldbach Conjecture

The existence of such a consecutive array of even differences ranging from 2 to 20 implies that all evens in [10, 30] can be expressed as sums of two primes in Figure 2, through re-pairing demonstrated in Figure 3.

In summary, the above two observations prove that all evens in [10, 42] can be expressed as sums of two primes in Figure 2.
Case 2. When $X_{\mathrm{n}}=210$
$X_{5}=2 \times 3 \times 5 \times 7=210$, is equal to the sums of 19 different pairs of primes (Figure 4). For example, 11 and 199 constitute a prime pair that has a sum of 210 . 199, a half of the pair, is connected with 41 different even differences ranging from 2 to 196 (the list is omitted for simplicity) (Table 3). Such connections imply that 41 different even sums ranging from 14 to 210 can be obtained by replacing 199 with other smaller primes in Figure 4, through re-pairing demonstrated in Figure 3. 11, the other half of the pair, is connected with 41 different even differences ranging from 2 to 188 (Table 4). Such connections imply again that, by replacing 11 with greater primes in Figure 4, 41 different even sums ranging from 212 to 398 can be obtained (the list is omitted for simplicity).

Analysis of the above cases suggests that an array of consecutive evens differences in certain range guarantees allevens within certain range centered on super product of a prime to be expressed as sums of at least one pair of primes through re-pairing demonstrated in Figure 3.

Table 3: Differences of seven primes from smaller primes in Figure 4. Differences of these primes from other primes in Figure 4 constitute a consecutive array of evens ranging from 2 to 196.

Prime	Differences	
199	$\begin{aligned} & 2,6,8,18,20,26,32,36,42,48,50,60,62,68,72,86,90,92,96,98,102, \\ & 110,116,120,126,128,132,138,140,146,152,156,158,162,168,170,176, \\ & 180,182,186,188,192,194,196 \end{aligned}$	interrupted array
197	$\begin{aligned} & 4,6,16,18,24,30,34,40,46,48,58,60,66,70,84,88,90,94,96,100,108, \\ & 114,118,124,126,130,136,138,144,150,154,156,160,166,168,174,178, \\ & 180,184,186,190,192,194 \end{aligned}$	interrupted array
193	$\begin{aligned} & 2,12,14,20,26,30,36,42,44,54,56,62,66,80,84,86,90,92,96,104, \\ & 110,114,120,122,126,132,134,140,146,150,152,156,162,164,170,174, \\ & 176,180,182,186,188,190 \end{aligned}$	interrupted array
191	$\begin{aligned} & 10,12,18,24,28,34,40,42,52,54,60,64,78,82,84,88,90,94,102,108, \\ & 112,118,120,124,130,132,138,144,148,150,154,160,162,168,172,174, \\ & 178,180,184,186,188 \end{aligned}$	interrupted array
181	$\begin{aligned} & 2,8,14,18,24,30,32,42,44,50,54,68,72,74,78,80,84,92,98,102,108, \\ & 110,114,120,122,128,134,138,140,144,150,152,158,162,164,168,170, \\ & 174,176,178 \end{aligned}$	interrupted array
179	$\begin{aligned} & 6,12,16,22,28,30,40,42,48,52,66,70,72,76,78,82,90,96,100,106, \\ & 108,112,118,120,126,132,136,138,142,148,150,156,160,162,166,168, \\ & 172,174,176 \end{aligned}$	interrupted array
151	$2,12,14,20,24,38,42,44,48,50,54,62,68,72,78,80,84,90,92,98,104,$ $108,110,114,120,122,128,132,134,138,140,144,146,148$	interrupted array
Summary of the above differences	$2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44$, $46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84,86$, $88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118,120$, $122,124,126,128,130,132,134,136,138,140,142,144,146,148,150,152$, $154,156,158,160,162,164,166,168,170,172,174,176,178,180,182,184$, 186, 188, 190, 192, 194, 196	consecutive even differences

The existence of such a consecutive even difference array ranging from 2 to 196 implies that all evens in [14, 210] can be expressed as sums of two primes in Figure 4.

Table 4: Differences of seven primes from greater primes in Figure 4. All the differences of these primes from other primes in Figure 4 constitute a consecutive array of evens ranging from 2 to 188.

Prime	Differences	Annotation
11	$2,6,8,12,18,20,26,30,32,36,42,48,50,56,60,62,68,72,78,86,90$, 92, 96, 98, 102, 116, 120, 126, 128, 138, 140, 146, 152, 156, 162, 168, 170, 180, 182, 186, 188	interrupted array
13	4, 6, 10, 16, 18, 24, 28, 30, 34, 40, 46, 48, 54, 58, 60, 66, 70, 76, 84, 88, 90, 94, 96, 100, 114, 118, 124, 126, 136, 138, 144, 150, 154, 160, 166, 168, 178, 180, 184, 186	interrupted array
17	$2,6,12,14,20,24,26,30,36,42,44,50,54,56,62,66,72,80,84,86,90$, 92, 96, 110, 114, 120, 122, 132, 134, 140, 146, 150, 156, 162, 164, 174, 176, 180, 182	interrupted array
19	$4,10,12,18,22,24,28,34,40,42,48,52,54,60,64,70,78,82,84,86,90$, 94, 108, 112, 118, 120, 130, 132, 138, 144, 148, 154, 160, 162, 172, 174, 178, 180	interrupted array
23	$6,8,14,18,20,24,30,36,38,44,48,50,56,60,66,74,78,80,82,86,90$, 104, 108, 114, 116, 126, 128, 134, 140, 144, 150, 156, 158, 168, 170, 174, 176	interrupted array
29	$2,8,12,14,18,24,30,32,36,42,44,50,54,60,68,72,74,76,80,84,98$, $102,108,110,120,122,128,134,138,144,150,152,162,164,168,170$	interrupted array
31	$6,10,12,16,22,28,30,34,40,42,48,52,58,66,70,72,74,78,82,96$, $100,106,108,118,120,126,132,136,142,148,150,160,162,166,168$	interrupted array
Summary of all above differences	$2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40,42,44$, $46,48,50,52,54,56,58,60,62,64,66,68,70,72,74,76,78,80,82,84$, $86,88,90,92,94,96,98,100,102,104,106,108,110,112,114,116,118$, $120,122,124,126,128,130,132,134,136,138,140,142,144,146,148,150$, $152,154,156,158,160,162,164,166,168,170,172,174,176,178,180,182$, 184, 186, 188	consecutive array

The existence of such a consecutive even difference array ranging from 2 to 188 implies that all evens in [210, 398] can be expressed as sums of two primes in the Figure 4.
In summary, all evens in $[14,398]$ can be expressed as sums of two primes in Figure 4.

II. CASE SUMMARY

In the above analyses, existence of a consecutive array of even differences makes it possible for any evens within certain range centered on a super product of a prime to be expressed as sums of two primes. The premise for such a generalization is that as long as all even differences are related to at least one of paired primes. This guarantees all evens within a certain range centered on a super product of a prime to be expressed as sums of two primes, after repairing demonstrated in Figure 3. Such premise appears to be no challenge at all, as 2 primes are enough to generate such an array in case $X_{4}=$ 30 (Table 1-2) while 7 primes are enough to generate such an array in case of $X_{5}=210$ (Table 3-4). As super product increases expotentially, the number of prime pairs increases correspondingly, this makes re-pairing and generating more evens as sums of two primes easier. It is intriguing that the value of super product of primes increase into the infinite as primes do while the differences among primes are conservative and can be passed into the infinite, as shown in Figures 4-5 in [6]. It seems hard to find an upper limit for the applicable scope of the above generalization.

This completes proof 2 of Theorem 2.
A corollary can be inferred from Theorem 2. Namely, Corollary 1: Every even number greater than 4 is equal to the sum of two primes.

Corollary 1 is an equivalent of Goldbach Conjecture.

Figure 4: In the middle, odd primes smaller than 210 are plotted on an axis. Above the axis, 38 primes are paired and have sums equal to 210 . Below the axis, even differences ranging from 2 to 188 are connected to their related primes.

III. CONCLUSIONS

The Goldbach Conjecture is proven true. This will help to accelerate related research on primes.

CONFLICTS OF INTERESTS

The author declares no conflicts of interests regarding the publication of this paper.

ACKNOWLEDGEMENTS

This is dedicated the $80^{\text {th }}$ birthday of my father, Bingyi Wang, who gave me a good start in mathematics and has been supportive throughout my career. This research was supported by the Strategic Priority Research Program (B) of Chinese Academy of Sciences (Grant No. XDB26000000), and National Natural Science Foundation of China (41688103, 91514302).

REFERENCES

1. Guy, R.K. (2007) Unsolved problems in number theory. Science Press, Beijing.
2. Hua, L.-G. (1979) Introduction to number theory. Science Press, Beijing.
3. Devlin, K. (1999) Mathematics: the new golden age. Columbia University Press, New York.
4. Cai, T. (2019) Figurate primes and Goldbach Conjecture. Adavances in Mahtematics (China) 48, 766-768.
5. Wang, B.Y., and Wang, X. (2021) Symmetrical distribution of primes and their gaps. Advances in Pure Mathematics 11, 447-456.
6. Wang, X. (2021) The genesis of prime numbers ---- Revealing the underlying periodicity of prime numbers. Advances in Pure Mathematics 11, 12-18.

This page is intentionally left blank

[^2]
[^0]: © 2021. Xin Wang. This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

[^1]: Two Ways to Prove Goldbach Conjecture

[^2]: Two Ways to Prove Goldbach Conjecture

