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ABSTRACT
In this contribution, we propose a single-species population growth model formulated using

ideas emanating from Liebig’s principle of limiting factors. The inherent natural natality rate

determines by the minimum between the size of the population and that of a resource on which

the population depends for sustenance. Moreover, emulating the unrestricted population

growth assumption, we hypothesise that the associating natural mortality rate is proportional

to population size.We also consider that the external feeding resource's consumption rate

varies directly proportional to the natural growth rate of the population.In this delivery, we

present a qualitative study of the associated trajectories and fitting results based on data on

populations growing under experimental or natural conditions. The possible phase

configurations include regimes with stable equilibria, sigmoidal growth, extinction, or

stationarity. All study cases confirmed that the offered model entails high reproducibility of

observed variation patterns while supplying remarkable interpretative capabilities.The

proposed model also allows simultaneous identification of the population size trajectory and

the resource abatement function. One phase of Liebig’s limiting factors principle-driven model

can consistently mimic population size abatement to extinction. Such a feature misses

improved in regularly conceived S-shaped population growth models.
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I. INTRODUCTION

The optimal settings for biological processes often occur at the minimum and maximum values

of relevant variables (Ghaleb et al., 2020; Peeters & Gardeniers, 1998). The concept of extreme

value control ascended from results reported by K. Sprengel in 1839 (Sprengel, 1839;

El-Sharkawy, 2011) and later popularised by Justus von Liebig, stating that the nutrient present

in the minimum determines the rate of growth of a particular organism (Liebig, 1843). This

observation led to the establishment of Liebig's Principle of Limiting Factors, also known as

Liebig's Law of the Minimum (Rizhinashvili, 2022; Anees, 2022). Agents that slow down growth

in an ecosystem constitute limiting factors. Control exerts by either the minimum or maximum

values that the factor can assume over a gradient of variation. Based on lower and upper

tolerance limits, Liebig's Law of the Minimum was generalised into the Law of the Tolerance of
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Shelford (Shelford, 1913). Furthermore, limiting factors can indirectly influence the impact of

other non-limiting factors by interacting with them. This principle, known as the principle of

Limiting Factors, is treasured in studying the entire or parts of ecosystems (Odum,1963;

Odum,1971).

Although in the ecological literature, the control by extreme values regularly cites, its utilisation

as a conceptual framework for population growth models is limited. The initial effort to apply

this concept was due to I. A. Polyetayev et al. in 1971, who proposed Liebig's Principle of

Limiting Factors-based model for predator-prey interactions (Polyetayev et al., 1971). In the

Polyetayev model, the natality rate for the prey population determines by the minimum between

the population size and the extent of an external resource representing feeding energy

availability. Building upon these ideas, Echavarría and Gomez (1979) and Montiel-Arzate, et al.

(2004) further developed related population models by maintaining natality as controlled by

Liebig's Law of the Minimum but emulating Shelford's Law of Tolerance by hypothesising that

the mortality rate regulates by the maximum value of factors depending on population size.

Recently, Echavarria-Heras et al. (2021) revised the approach by Montiel-Arzate et al. (2004) to

propose a model for the growth of a single species population built upon the Liebig-Shelford as

mentioned earlier paradigm for the control of the related natural growth rate, but including a

specific scaling or weighting of population size to model the increase in mortality promoted by

low population densities. This last approach reported consistent reproducibility when fitted on

real data sets. However, the authors also reported inconveniences since a direct fitting procedure

that relies on estimates' initial values brought high sensibility associated with local minimum

problems at the nonlinear acquisition of final values. Therefore, a revision aimed to avoid or at

least lessen the parameter estimation burden experienced deems necessary. In that vein,

reducing the complexity associated with the Echavarria-Heras et al. (2021) construct while

simultaneously keeping its reproducibility strength endures a reasonable rationale. For that aim,

in this contribution, we modify the protocol by Echavarria-Heras et al. (2021) and propose a

single species population growth model, built upon Liebig's Principle of Limiting Factors and

such that: (1) the inherent natural natality rate is determined according to Liebig's Law by the

minimum between the size of the population and that of the resource on which the population

depends for sustenance, (2) by partially emulating the unrestricted population growth

hypothesis the add-on natural mortality rate is supposed to be proportional solely to population

size, and (3) the rate of consumption of the external feeding resource ostensibly varies directly

proportional to the natural growth rate of the population. The resulting model identifies further

as Liebig's Principle of Limiting Factors Population Growth Model or Liebig's Law Population

Model (LLPM). Despite being partially founded on the assumption that mortality depends

linearly on population size, the present model demonstrated a proven capability to mimic the

typical s-shaped pattern associated with restricted growth models—besides, a lesser complexity

demonstrated to be advantageous in finding parameter estimates for consistent reproducibility.

We include several examples based on observed data that confirm the empirical and

interpretative adequacy of the present paradigm. An appendix presents the formalities behind a

qualitative study of the associating global trajectory.

II. THEORETICAL APPROACH

For present aims, we denote through a quantitative measure of the size of a single-species𝑥(𝑡) 
population at a time . It could be understood by , for example, the biomass of all animals

composing the population, or their number, if it is suitably large and changes continuously. We

additionally assume that the maintenance of the population depends on the presence of an

external resource or agent whose extent at time denotes using For instance, could𝑡 𝑅(𝑡). 𝑅(𝑡)

a

𝑥(𝑡)𝑡
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stand for: the food solution for a culture of bacteria; the amount of solar energy with which the

primary producers photosynthetically elaborate carbohydrates; the biomass of autotrophs upon

which herbivores fed or the biomass of these later that provide nourishment for carnivores; the

pool of antibiotics that limit the proliferation of a bacterial population; the number of nests

available for a bird species.

We now explain how Liebig’s Law of the Minimum statement can produce a population growth

model under a limiting resource. For that aim, we use the symbol to denote the natural�̇� 𝑡( )
growth rate of population size at a time . Formally, the proposed model states that𝑥 𝑡( ) 𝑡

(1)

where at time stands for the amount of a resource that the population requires to stand by,𝑅(𝑡) 𝑡
and is a function depending on both and and represents the intrinsic𝑓(𝑅 𝑡( ), 𝑥(𝑡)) 𝑥 𝑡( ) 𝑅 𝑡( )
population growth rate at a time .Along Equation (1), we take on the initial conditions𝑡 𝑅

0
= 𝑅 0( )

and 𝑥
0

= 𝑥 0( ).

Following Charlebois and Balázsi (2018) and Echavarria-Heras et al. (2021), we assume that the

natural population growth rate and resource consumption relate such that

(2)

where is a positive constant. Integration yields𝑝

(3)

In order to provide a representation of Equation (1) deriving from Liebig’s Law of the Minimum,

we assume that at a given time, population size sets by the balance of two opposite𝑡 𝑥 𝑡( )
processes: one having intensity and nourishing the number of births, and another of a𝑁(𝑡)
strength inducing the natural death of individuals in the population.𝑀(𝑡)

This work will limit ourselves to where stands for the population's external energy source.𝑅(𝑡)
To facilitate the reasoning, we will assume that and at eachtime can bemeasured with𝑅(𝑡) 𝑥(𝑡) 𝑡
the same units and compare them directly. might be such that, at time , satisfies the𝑅(𝑡) 𝑡
essential needs of all population individuals. For example, if each individual of a herbivorous

population consumes an average of kg of food at time , then an energy source of value𝑝 𝑡 𝑝𝑥(𝑡)
could satisfy thevital needs of the population. In other words, if the number of individuals is𝑥(𝑡)
less than the magnitude of the energy source at time , then there will be no lack of food for𝑅(𝑡) 𝑡
the population, and we could assume that the intensity of the birth process depends on the𝑁 𝑡( )
number of individuals at each instant If, on the contrary, is more significant than ,𝑥(𝑡) 𝑡. 𝑥(𝑡) 𝑅(𝑡)
then only some individuals equal to at time will be able to feed normally and the intensity𝑅(𝑡) 𝑡
of the birth process will set by for each .In summary, considering Liebig's Law of the𝑁(𝑡) 𝑅(𝑡) 𝑡
Minimum, we may consider a positive constant such that𝑎,  

(4)

The minimum operation extends to all values of considered in a specific interval, say of the𝑡
type , where can be any real number.[0,  𝑇] 𝑇

�̇(�) = ���(�), �(�)��(�)

��(�)

��
= −�

��(�)

��

�(�) = ��  − �(�(�) − ��)

�(�) = �min�{�(�), �(�)}

,
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Correspondingly, we will assume that the intensity of the natural death process sets is𝑀 𝑡( )
directly proportional to the number of individuals in the population. That is, for , a positive𝑏
constant, we take

(5)

Then, the natural population growth rate is formally given by the balance of and ,𝑥 𝑡( ) 𝑁(𝑡) 𝑀(𝑡)

(6)

Combining Equations (4) through (6) the intrinsic population growth rate 𝑓 𝑅 𝑡( ), 𝑥 𝑡( )( )
introduced in Equation (1), takes the form,

(7)

Therefore, Equation (1) gets the piece wisely defined form

(8)

Moreover, replacing as given by Equation (3) into Equation (8) and simplifying leads to𝑅(𝑡)

(9)

where
(10)

and

(11)

Note that the expressions of the second member of (9) are continuous functions by virtue that

we can suppose that as much as are continuous functions of time.The first of the𝑥(𝑡) 𝑅(𝑡)
differential equations of (9) is a homogeneous linear equation whose solution is immediate, and

the second of these equations is a non-homogeneous linear equation which using an integration

factor or via the parameter variation method, can also be solved. Then, the solution to𝑥(𝑡)
Equation (9) will be

(12)

where

(13)

and
(14)

with and given by Equations (10) and (11) one to one, and determined from the𝐸 𝐾 𝑥
10

𝑥
20

requirement that , and the continuity condition being a time value𝑥 0( ) = 𝑥
0

𝑥
1

𝑡
𝑐( ) = 𝑥

2
𝑡

𝑐( ) 𝑡
𝑐

�(�) = ��(�)

�̇(�) = �(�) − �(�)

���(�), �(�)� = � ��� (�(�), �(�)) �(�) − �⁄

�̇(�) = �
(� − �)�(�) ��� �(�) ≤ �(�)

��(�) − ��(�) ��� �(�) > �(�)

�

�̇(�) = �
(� − �)�(�) ��� �(�) ≤ �

(�� + �)(� − �(�))  ��� �(�) > �

�

� = (�� + ���) (1 + �)⁄

� = ��(� + 1)(�� + �)��

�(�) = �
��(�) ��� �(�) ≤ �

��(�) ��� �(�) > �

�

��(�) = ����(���)�

��(�) = �����(����)� + �(1 − ��(����)�)
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such that Note also that according to equations (9) and (12), will be increasing𝑥 𝑡
𝑐( ) = 𝐸. 𝑥

1
𝑡( )

whenever , and conversely, will decrease provided holds. In turn, by Equations𝑎 > 𝑏 𝑥
1

𝑡( ) 𝑎 < 𝑏

(9) and (12), satisfies whenever the inequality holds. In turn,𝑥
2

𝑡( )
𝑑𝑥

2
(𝑡)

𝑑𝑡 > 0 𝑥
2

𝑡( ) < 𝐾
𝑑𝑥

2
(𝑡)

𝑑𝑡 < 0

if 𝑥
2

𝑡( ) > 𝐾.

Setting in Equation (3) considers the case where remains steady at a level .𝑝 = 0 𝑅(𝑡) 𝑅
0

Equations (10) and (11) become and , one-to-one. Let , satisfying ,𝐸 = 𝑅
0

𝐾 =
𝑎𝑅

0

𝑏 𝑥
𝑠

𝑡( ) 𝑥
𝑠

0( ) = 𝑥
𝑠0

stand for the global trajectory associated with such a stationary case.

Then,correspondingly,Equation (9) takes the form

(15)

And in turn, the stationary form of Equation (12) becomes𝑥
𝑠

𝑡( )

(16)

where
(17)

(18)

where, as we have specified around Equation (14), and are integration constants to be𝑥
𝑠10

𝑥
𝑠20

determined using the initial condition and the continuity requirement𝑥
𝑠

0( ) = 𝑥
𝑠0

𝑥
𝑠1

𝑡
𝑐( ) = 𝑥

𝑠2
𝑡

𝑐( )
being a time value such that𝑡

𝑐
𝑥

𝑠
𝑡

𝑐( ) = 𝑅
0
.

The stationary characterisation of Equation (12) provides a resource availability model for𝑥
𝑠

𝑡( )

autotrophic organisms, including photosynthetic bacteria, algae, and plants, that rely on a

consistent energy source to withstand their growth and population sustainability. These

organisms possess the ability to produce their food through photosynthesis, which entails the

transformation of sunlight into chemical energy. As long as there is a stable availability of

sunlight, the autotrophic population can thrive and grow. Another instance of a population

dependent on a steady energy source is a group of chemosynthetic organisms inhabiting

environments with a continuous supply of chemical compounds, such as sulfur or methane.

They can generate sustenance using the energy derived from these compounds to support

growth and reproduction. In addition, certain heterotrophic populations, such as specific kinds

of fungi, can subsist and multiply on a steady energy supply sourced from decomposing organic

matter given a constant supply.

The logistic model proposed initially by Verhulst (1838) as a way of modelling population

growth under limited availability of resources formally represents employing the differential

Equation

(19)

���

��
= �

(� − �)��(�) ��� ��(�) ≤ ��

��� − ���(�) ��� ��(�) > ��

�

��(�) = �
���(�) ��� �(�) ≤ ��

���(�) ��� �(�) > ��

�

���(�) = �����(���)�

���(�) = �������� +
���

�
(1 − ����)

�̇(�) = ��(�)(1 − �(�) �)⁄
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where stands for population size or density at time , is the associated intrinsicrate of𝑥(𝑡) 𝑡 𝑎
increase, and is a positive constant known as the environmental carrying capacity. The logistic𝐾
model will provide a reference to assess the reproducibility strength of the global trajectory of

Liebig's Principle of limiting factors model of Equation (9).

III. RESULTS

3.1 Qualitative study of the global trajectory 𝑥 𝑡( )

As shown in the appendix, if we have that , then for , the global trajectory𝑎 − 𝑏 < 0 𝑥
0
≤ 𝐸 𝑥(𝑡)

acquires the form given by Equation (13) with . Therefore, is monotonically𝑥
1

𝑡( ) 𝑥
10

=  𝑥
0

𝑥 𝑡( )

decreasing for all . Because of this, the population size vanishes according to an exponential𝑡 ≥0
law. Alternatively, if and , will initially conform to the branch given by𝑎 < 𝑏 𝑥

0
> 𝐸 𝑥 𝑡( ) 𝑥

2
𝑡( )

Equation (14), setting . Since implies , we have and𝑥
20

= 𝑥
0

𝑎 < 𝑏 𝐾 < 𝐸
𝑑𝑥

2
(𝑡)

𝑑𝑡 < 0 𝑥
2

𝑡( )

asymptotically approaching the value . But, by continuity on its descent towards , there𝐾 𝐾
necessarily will be a time such that Afterwards, the dynamics will followthe𝑡

𝑐
𝑥

2
𝑡

𝑐( ) = 𝐸. 𝑥(𝑡)

split, which because of the ordering , will drive population size to vanish. We can𝑥
1

𝑡( ) 𝑎 < 𝑏

summarise that maintenance of the condition implies the disappearance of the𝑎 < 𝑏
population, regardless of its initial value (also regardless of whether this value is greater or𝑥

0

equal or less than , see Figure 1).𝐸

Figure 1: The behaviour of the trajectory fo . For , population size vanishes,𝑥(𝑡) 𝑎 < 𝑏 𝑥
0
≤ 𝐸 𝑥(𝑡)

following an exponential law, provided that .Whenever and , population size𝑎 < 𝑏 𝑎 < 𝑏 𝑥
0

> 𝐸

decreases initially according to the correspondence rule approaching the asymptotic𝑥(𝑡) 𝑥
2

𝑡( )

value , which lies below , when crossing this threshold, the trajectory ceases to behave𝐾 𝐸 𝑥(𝑡)
according to the rule and switches to the path, and therefore, asymptotically𝑥

2
𝑡( ) 𝑥

1
𝑡( )

approaching zero as progresses to infinity.𝑡

r
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Consider now the order.Then, we will also have . Then, for , at the beginning of𝑎 > 𝑏 𝐾 > 𝐸 𝑥
0

≤𝐸
the growth process, population size will describe according to the exponentially increasing path

. Furthermore, since by continuity, there will be a time such that𝑥
1
(𝑡) 𝑥

0
≤𝐸 𝑡

𝑐
𝑥

1
𝑡

𝑐( ) = 𝐸.

Afterwards, the dynamics will switch to being modelled by the stem. Therefore, as the𝑥(𝑡) 𝑥
2

𝑡( )

appendix explains, population size will keep increasing and asymptotically approaching𝑥 𝑡( )
. The case and portraits similarly with behaving as the branch𝐾 > 𝐸 𝑎 > 𝑏 𝐸 < 𝑥

0
< 𝐾 𝑥(𝑡) 𝑥

2
𝑡( )

and asymptotically approaching Besides, whenever and , the population𝐾. 𝑎 > 𝑏 𝑥
0

> 𝐾 > 𝐸

size will be described by so the condition will fix to be decreasing and𝑥(𝑡) 𝑥
2

𝑡( ), 𝑥
0

> 𝐾 𝑥(𝑡)

asymptotically approaching as progresses to infinity (Figure 2).𝐾 𝑡

Figure 2: The behaviour of the trajectory for For and , at the𝑥(𝑡) 𝑎 > 𝑏. 𝑎 > 𝑏 𝑥
0
≤ 𝐸 < 𝐾

beginning of the process, population size increases according to the branch; because of𝑥(𝑡) 𝑥
1
(𝑡)

continuity, will reach the threshold at a time . For , population size will keep𝑥
1
(𝑡) 𝐸 𝑡

𝑐
𝑡≥𝑡

𝑐

growing according to , thereby asymptotically approaching level The case and𝑥
2
(𝑡) 𝐾. 𝑎 > 𝑏

renders similarly with behaving as the branch approaching For𝐸 < 𝑥
0

< 𝐾 𝑥(𝑡) 𝑥
2

𝑡( ) 𝐾. 𝑎 > 𝑏

and , the trajectory decreases from and approaches the equilibrium level𝑥
0

> 𝐾 𝑥
0

𝐾.

For and the ordering, population size determines by , so it remains𝑎 = 𝑏 𝑥
0
≤ 𝐸 𝑥(𝑡) 𝑥

1
𝑡( )

stationary at . Assuming that the arrangement and holds, at the start of the𝑥
0

𝑎 = 𝑏 𝑥
0

> 𝐸

growing process, the trajectory will be determined by the rule with the initial condition𝑥(𝑡) 𝑥
2

𝑡( )

As the appendix explains,we also have for this parameter arrangement so the𝑥
20

= 𝑥
0
.

𝑑𝑥
2
(𝑡)

𝑑𝑡  < 0

trajectory shall decrease and asymptotically approach𝑥(𝑡) 𝐸.
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Figure 3: The behaviour of the trajectory for For and , the trajectory𝑥(𝑡) 𝑎 = 𝑏. 𝑥
0
≤𝐸 𝑎 = 𝑏 𝑥(𝑡)

remains stationary. For and , the trajectory decreases and asymptotically𝑎 = 𝑏 𝑥
0

> 𝐸 𝑥(𝑡)

approaches .𝐸

In summary, the case entitles a heterogeneous behaviour because if the magnitude of the𝑎 = 𝑏
initial population satisfies , then population size remains steady. However, if the𝑥

0
< 𝐸 𝑥(𝑡)

initial population size lies above the threshold, i.e. , then decreases and𝐸 𝑥
0

> 𝐸 𝑥(𝑡)

asymptotically approaches the threshold (Figure 3).𝐸

3.2 Fitting Results

 

In what follows, we explain the performance of LLPM, Liebig's law population model of

Equation (9), as an exploratory tool given different data sets. We address data on yeast grown

under ideal conditions in a test tube and the growth of a harbour seal population, both reported

by Avissar et al. (2013). We also consider data reported by R. Pearl on the growth of Drosophila

melanogaster (Pearl, 1927) and data reported by Hughes and Tanner (2000) on the slow decline

of an Agaricia agaricites population on Jamaican reefs. Fitted parameters, associating standard

deviations and Concordance Correlation Coefficient (CCC) values, also denoted utilising the ρ
symbol (Lin, 1989), appear in Table 1. To compare the reproducibility strength of offered LLPM,

we include CCC values of fits of the logistic model of Equation (19) performed on the included

data sets.
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Data

set
xo a b E 𝑅

0 𝐾 𝑝 ρ𝐿𝐿𝑃𝑀 ρ𝐿𝑂𝐺

Yeast 1.1 0.2549 0.0452 5.7925 8.1388 12.827 0.5 99.23% 98.19%

Seal 1634.24 0.3142 0.1748 4345.66 4350 7801 0.0016 92.97% 86.91%

Fruit fly 13.0039 0.4956 0.3616 235 279.39 303.31 0.2 99.43% 99.43%

Coral 142.62 0.1070 0.2565 376.49 376.871 157.20 0.0016 91.43% 88.99%

stands for CCC value linking to the LLPM of Equation (9), denotes CCC produced by

a fit of

ρ 𝐿𝐿𝑃𝑀 ρ 𝐿𝑂𝐺
the logistic model of Equation (19).

We first considered data on yeast growing under ideal conditions in a test tube portrayed in

Figure 45.10a) in Avissar et al. (2013) and reproduced here in Figure 4a. We know that the yeast

growth curve shown in Panel (a), as portrayed in Avissar et al. (2013), suggests an inconsistent

placement of the initial condition . Nevertheless, blue lines in Figure 4b display a consistent𝑥
0

S-shaped curve fitted by the logistic model of Equation (19) on yeast data ( ,𝑎 = 0. 2056
, . Afterwards, we produced a fit of Liebig's law of the𝑥

0
= 0. 2998, 𝐾 = 12. 57 ρ = 98. 19)

minimum-driven model of Equation (9) (LLPM) to yeast data. Fitted LLPM parameters values

were , , and , which through𝑎 =  0. 2549 𝑏 = 0. 0452, 𝑥0
 =  1. 1 𝑅0

 =  8. 1388 𝑝 = 0. 5
Equations (10) and (11) produced and one to one. Concurring𝐸 = 5. 7925 𝐾 = 12. 827
reproducibility index value was Comparing the shapes of the trajectories of the yeastρ = 99. 23.
population displayed in Figure 4, we can be aware that blue lines fitted by the present LLPM

(Panel c) consistently describe an S-shaped pattern. Panel (c) also shows the shape of the fitted

form of the resource abatement function as given by Equation (3) (red lines). Avissar et al.𝑅(𝑡)
(2013) do not refer to whatever energy source the yeast population depended on, but in any

event, the shape of the fitted form of suggests that independently of bulk consumption, the𝑅(𝑡)
yeast population and its feeding resource stabilised one to one.

Figure 4: Yeast growth data from Avissar et al. (2013). Panel (a) is an assumed S-shaped logistic

growth curve pattern associated withyeast grown under ideal conditions in a test tube, as in

   

Table 1: Estimated values of initial population and resource sizes and , as well as𝑥0 𝑅0

parameter, values and produced by fitting the LLPM of Equation (9) to the listed data𝑎, 𝑏, 𝑝 𝐸
sets (Avissar et al., 2013; Pearl, 1927; Hughes & Tanner, 2000). Concordance Correlation

Coefficient ( ) values are also displayed.ρ
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Figure 45.10a in Avissar et al. (2013). Panel (b) displays a fit of the logistic model as given by

Equation (19) to referred yeast data (blue lines). Panel (c) exhibits the spread of observed data

points about the trajectory resulting by fitting LLPM, Liebig's law of the minimum-driven𝑥(𝑡)
model of Equation (9), to the yeast growth data adapted from Panel (a) (blue lines). Panel (c)

also shows the shape of the fitted form of the resource abatement function as given by𝑅(𝑡)
Equation (3) (red lines).

Figure 5a presents the harbour seal populationdata in Figure 45.10b in Avissar et al. (2013).

Figure 5b presents the spread of referred seal data about the logistic curve fitted by the model of

Equation (19).Concordance Correlation Coefficient resulted in a value of , andρ = 86. 91
parameter estimates were , , . Figure 5c shows the spread𝑎 = 0. 2986 𝐾 = 7459. 08 𝑥

0
= 1104. 15

of captured seal data about the trajectory produced by a fit of LLPM, Liebig's law of the

minimum-based model of Equation (9). Corresponding fitted parameters values were

, , , , , which employing𝑎 =  0. 3142 𝑏 =  0. 1748 𝑥0
 =  1634. 2444 𝑅0

 =  4350 𝑎𝑛𝑑𝑝 =  0. 0016
equations (10) and (11) produced and one to one. The reproducibility𝐸 = 4345. 6617 𝐾 = 7801
index acquired a value of . The associating form of (red lines in Panel (c) suggestsρ = 92. 97 𝑅(𝑡)
that the steady form of the LLPM given by Equation (15) also fits consistently. This fact explains

by the small fitted value for the parameter Moreover, Panel (d) displays a close-up look at the𝑝.
variation of corroborating that this function remained close to its initial value𝑅(𝑡),  
independently of consumption by the seal population.

Figure 5: Fit of the LLPM on seal population growth data as reported in Avissar et al. (2013).

Panel (a) is a presumed logistic growth curve pattern associated with a harbour seal population,

as portrayed in Figure 45.10b in Avissar et al. (2013). Panel (b) exhibits the spread of the Avissar

et al. (2013) harbour seal data about curves fitted by the conventional logistic model of Equation
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(19). Panel (c) shows data spread about the trajectory resulting by fitting LLPM Liebig's law𝑥(𝑡)
of the minimum-driven model of Equation (9) to the available seal population growth

data—panel (d) variation of the fitted resource availability function .𝑅(𝑡)

Correspondingly, Figure 6a presents the spread of data reported by R. Pearl on the growth of

Drosophila melanogaster (Pearl, 1927) about the logistic curve fitted by the model of Equation

(19). Fitted parameter values were , , and with Concordance𝑎 = 6. 19 𝐾 = 329. 7 𝑥
0

= 0. 2194

Correlation Coefficient at a value of . Figure 6b shows the spread of capturedρ = 99. 43
Drosophila melanogaster data about the trajectory produced by a fit of LLPM, Liebig's law of the

minimum-based model of Equation (9). Fitted parameters values were ,𝑎 = 0. 4956 𝑏 = 0. 3616
, , , , which through Equations (10) and (11) produced𝑅

0
=  279. 3992 𝑥

0
=  13. 0039 𝑝 =  0. 2

and one to one. Red lines on panel b display the variation of feeding𝐸 = 235 𝐾 = 303. 31
resource availability , showing that although population consumption induced an𝑅(𝑡)
asymptotical approach to a value , resource abatement was moderate.𝐾

Finally, Figure 7a presents the spread of data reported by Hughes and Tanner (2000) on the

decline of an Agaricia agaricites population on Jamaican reefs about the logistic curve fitted by

the model of Equation (19) with , , and a Concordance𝑎 =− 0. 1357 𝐾 =− 1. 7040 𝑥0 = 126. 59
Correlation Coefficient of This fit identified the declining branch of the logisticρ = 88. 99.
model. However, it resulted in incompatibly negative values for the parameters and . Figure𝑎 𝐾
7b shows the spread of captured Agaricia agaricites data about the trajectory produced by a fit of

Liebig’s law of the minimum-based model of Equation (9). Fitted parameters values were

, , , , , which employing𝑎 = 0. 1070 𝑏 = 0. 2565 𝑅
0

= 376. 871 𝑥
0

= 142. 6281 𝑝 = 0. 0016

Equations (10) and (11) produced and , one to one. Compared to an𝐸 = 376. 49 𝐾 = 157. 20
unreliable fit of the logistic model shown in Panel b), an LLPM try predicts the extinction of the

Agariciaagaricites population. In coherence, the LLPM predicts that the feeding resource path

adapts to a steadily growing pace of stabilisation (panel c). Then regardless of plentiful feeding

energy, the Agaricia agaricites population vanished away.

  

Figure 6: Fit of LLPM on Drosophila melanogastergrowth data presented in Pearl (1927). Panel

(a) displays a fit of the logistic model as given by Equation (19) to Drosophila melanogaster

data, with Panel (b) exhibits the spread about the trajectory resulting by fitting the Liebig’s𝑥(𝑡)
law of the minimum-driven model of Equation (9)to Drosophila melanogaster data. This last

Panel also shows the shape of the fit of the resource abatement function as given by𝑅(𝑡)
Equation (3). L
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IV. DISCUSSION
In cellular structures such as mitochondria, the maxima or minima of a periodical chemical

reaction proved to be determinants of observable patterns (Woodcock, 1978). In other processes,

for instance, catalysis, limiting values of variables such as pH and temperature can cause

enzymes to lose their functionality, thereby impairing the easing of essential chemical reactions

within living organisms (Dyson & Noltmann, 1968). Besides, the maximum and minimum blood

glucose levels, body temperature, or pH range are critical for maintaining homeostasis (Yildiz et

al., 2020). Furthermore, maximum and minimum values can activate regulatory mechanisms in

biological systems that help organisms deal with and adapt to challenging environmental

conditions. Within these response mechanisms, we can include activation of heat shock proteins

that shield cells from harm given extreme values of temperature or water conservation

mechanisms in plants in response to extreme osmotic conditions (Bich et al., 2016; Sharp et al.,

1999; Chaves & Oliveira, 2004). Another example of extreme value control of a biological

process is the existence of a minimum light intensity needed for efficient photosynthesis in

plants (Boardman, 1977; Madsen & Sand‐Jensen, 1994). What is more, in this vein, it is worth

mentioning that extreme levels of light intensity or CO2 concentrations can restrict the

effectiveness of photosynthesis and, as a result, hamper the capability of plants to create energy

(Jolliffe & Tregunna, 1968). Therefore, from a general perspective, comprehending the upper

and lower limits of biologically relevant variables delivers an understanding of organisms'

underlying limits, adaptive responses, and constraints.

In ecological settings, extreme values are often more descriptive of relevant dynamics than

standard measures of central tendency (Gaines & Denny, 1993; Montiel et al., 2004). Issues

relating to physical stress, such as high or low temperatures, salinity, soil water content, wind

velocities, and varying durations of air exposure, serve as examples (Denny & Deines, 1990).

Moreover, characterising extreme values not only aids in defining the optimal operational

boundaries for ecological processes and contributes to our interpretation of the correlation

between organisms and their environment (Ruthsatz, Dausmann, and Peck, 2022). For instance,

species interaction dynamics and community formation depend on the maximum and minimum

values of different variables (Checa et al., 2014). Furthermore, the availability of particular

resources can limit the distribution of species or the sizes of their populations (Wright, 1983),

while the sizes of predator populations below or above given edges can impact the distribution

and behaviour of prey species (Schneider, 2001). Also, from an ecological perspective,

 
  

Figure 7: Fitting results of the LLPM on Agaricia agaricites growth data presented in Hughes

and Tanner (2000).Panel (a) displays a fit of the logistic model given by Equation (19) to

Agaricia agaricites data. Panel (b) exhibits the spread about the trajectory resulting by𝑥(𝑡)
fitting Liebig's law of the minimum-driven model of Equation (9)to Agaricia agaricites data and

also shows the shape of fitted form of the resource abatement function as given by Equation𝑅(𝑡)
(3).Panel(c) close-up at the variation.𝑅(𝑡)  
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acknowledging the relevance of maximum and minimum values of pertinent variables

contributed to conceiving the concept of tolerance bounds (Niinemets & Valladares, 2008;

Pörtner, 2001; Goss & Bunting, 1976). For example, the minimum oxygen concentration

required for aquatic organisms' survival sets their tolerance lower limit (Seibel, 2011; Gaufin et

al., 1974). Likewise, the maximum temperature at which an organism can survive or reproduce

entails its thermal tolerance upper limit (Madeira et al., 2012; Buckley & Huey, 2016). Ecological

niches, characterised by certain variables' upper and lower limits, determine a species' optimal

environmental conditions (Galparsoro et al., 2009). Therefore, including maximum and

minimum thresholds for factors such as temperature, moisture, or nutrient availability helps to

understand how organisms distribute and their ecological requirements (Kearney, 2006).

Moreover, the notion of extreme value control significantly contributed to conceiving important

theoretical constructs in ecological research, such as the Principle of Limiting Factors, developed

based on results reported by Justus Von Liebig in 1843 (Liebig, 1843), the Law of Tolerance

conceived by Victor Ernest Shelford in the early 20th century. Moreover, the Theory of the

Niche, first proposed by the ecologist G. Evelyn Hutchinson in 1957, states that each species has

a range of environmental conditions in which it can thrive (Hutchinson, 1957; Hutchinson, 1978;

Polechová & Storch, 2008).

In summarising the passage above, it is worth emphasising that to understand better the

underlying limits, changes, and necessities of living organisms; it is essential to determine the

upper and lower limits that set the intervals of influence of their determining physical and

biological variables. This understanding of suitable extreme values assists in setting the

boundaries that biological processes must function within, leading to a better comprehension of

how organisms work in conjunction with their surroundings to function efficiently.

Notwithstanding, when referring to conceiving constructs aimed to model population dynamics,

besides a reduced number of papers (e.g. Polyetayev, 1971; Echavarria & Gomez, 1979;

Echavarria-Heras et al. 2021 Montiel-Arzate et al. 2004; Echavarria-Heras et al., 2021) the

relevance of including extreme values of causal variables in a dynamical set up has not been

adequately acknowledged in the literature. For that reason, we decided to further contribute to

the matter, so, in this work, we modified the protocol by Echavarria-Heras et al. (2021) that

resulted in the construct given by Equation (9), which we refer to as LLPM, for a single species

population growth model, built upon Liebig's Principle of Limiting Factors. The LLPM sustains

by hypothesising that: (1) the inherent natural natality rate is determined according to Liebig's

Law by the minimum between the size of the population and that of its feeding resource,𝑥(𝑡)
at a time t, (2) the accompanying natural mortality rate is supposed to be proportional𝑅(𝑡),

solely to population size, and (3) the rate of consumption of the external feeding resource

ostensibly varies directly proportional to the natural growth rate of the population. Despite

being partially founded on the assumption that mortality depends linearly on population size,

the qualitative exploration of the behaviour of the global trajectory associated with the offered

LLPM demonstrated a proven capability to mimic the typical s-shaped pattern associated with

restricted growth models. The presented fitting results confer the LLPM of excellent

reproducibility features and reveal that such a paradigm offers a remarkable interpretative

strength. Firstly, the LLPM could identify the suggested form for the resource abatement

function on the fly, entailing a feature that the typical logistic growth model of Equation𝑅(𝑡)
(19) lacks. Secondly, also compared to the presently addressed logistic model, the LLPM offers a

consistent way to identify a declining pace in population size leading to extinction which the

latter model could not suitably achieve. Besides, simplifying complexity has been proven

advantageous in finding parameter estimates for consistent reproducibility of real data sets.
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Nevertheless, performing research on further simplifying the nonlinear parameter estimation

tasks deems necessary.

V. APPENDIX. ANALYTICAL APPROACH

5.1 Continuity property of the global trajectory 𝑥(𝑡)

Equation (12) states that the global trajectory , associating to the piecewise-defined ODE𝑥 𝑡( )
given by Equation (9), expresses such that

(A1)

where agreeing to Equations (10) and (11), we have

and

with as explained around Equation (3), stands for the constant of proportionality between the𝑝,  
resource consumption and natural population growth rates.

The constants and values in Equation (A1) follow from the requirement that𝑥
10

𝑥
20

𝑥 0( ) = 𝑥
0

along with the continuity condition , being a time value such that The𝑥
1

𝑡
𝑐( ) = 𝑥

2
𝑡

𝑐( ) 𝑡
𝑐

𝑥 𝑡
𝑐( ) = 𝐸.

value of is determined depending on the ordering relationships between and , along with𝑡
𝑐

𝑎 𝑏

the placement of the initial condition relative to the threshold. Two ordering𝑥 0( ) = 𝑥
0

𝐸

arrangements prompt the global trajectory to cross the threshold. The first one involves𝑥(𝑡) 𝐸
and , and another composing and𝑎 > 𝑏 𝑥

0
≤𝐸 𝑎 < 𝑏 𝑥

0
> 𝐸.

5.2 Continuity of the global trajectory in the case and𝑥(𝑡) 𝑎 > 𝑏 𝑥
0
≤ 𝐸

Assume that we have and . Then, at the beginning of the growth process, the global𝑎 > 𝑏 𝑥
0
≤ 𝐸

trajectory shapes according to the branch holding in the domain and given by𝑥(𝑡) 𝑥
1

𝑡( ) 𝑥 𝑡( )≤ 𝐸

Equation (A1). Then to accomplish the suitable form , we must choose ; that is, we𝑥
1

𝑡( ) 𝑥10= 𝑥0

acquire

(A2)

According to Equation (A1), the complementary branch of the global trajectory𝑥
2

𝑡( ) 𝑥(𝑡),

holding in the domain , depends on the initial condition , whose value ought to be𝑥 𝑡( ) > 𝐸 𝑥20

determined. For that aim, we must enforce that the global trajectory is continuous at a time𝑥(𝑡)
such that or equivalently and Therefore, we first need to𝑡 = 𝑡𝑐 𝑥 𝑡𝑐( ) = 𝐸 𝑥

1
𝑡𝑐( ) = 𝐸 𝑥

2
𝑡𝑐( ) = 𝐸.

obtain For achieving that task, we rely on the statement , so, using Equation (A2),𝑡𝑐. 𝑥
1

𝑡𝑐( ) = 𝐸

we must have

�(�) = �
��(�) = ����(���)� ��� �(�) ≤ �

��(�) = �����(����)� + �(1 − ��(����)�) ��� �(�) > �

�

� = (�� + ���) (1 + �)⁄  

� = ��(� + 1)(�� + �)�� 

��(�) = ���� ��(� − �)��
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from which solving for yields𝑡𝑐

(A3)

Secondly, we need to consider that continuity of at fulfils if and only if also𝑥 𝑡( ) 𝑡 = 𝑡𝑐 𝑥2 𝑡( )

satisfies . Agreeing with Equation (A1), this statement requires adapting a suitable𝑥2 𝑡𝑐( ) = 𝐸

value of the initial condition , which makes𝑥20

(A4)

Then, solving for , we obtain𝑥20

Moreover, equivalently replacing , as given by Equation (A3), one gets𝑡
𝑐

(A5)

Being identified, we can obtain the form of the branch joining the initial one to𝑥
20 

𝑥
2

𝑡( ) 𝑥
1

𝑡( )

compose the global trajectory 𝑥 𝑡( ).

5.3 Continuity of global trajectory in the case and𝑥(𝑡) 𝑎 < 𝑏 𝑥
0

> 𝐸

In turn, for and , agreeing to Equation (A1), the first portion of the global trajectory𝑎 < 𝑏 𝑥
0

> 𝐸

, turns out to be𝑥(𝑡)

(A6)

Then, to complete the path , we need to get the complementary portion holding in the𝑥(𝑡) 𝑥
1

𝑡( )

domain . As stated by Equation (A1) requires adapting the value of the associating initial𝑥 𝑡( )≤ 𝐸
condition such that the property that is continuous at a time for which𝑥

10
𝑥(𝑡) 𝑡 = 𝑡

𝑐
𝑥

2
𝑡

𝑐( ) = 𝐸

succeeds. Again, this entails both and taking a common value From Equation𝑥
2

𝑡
𝑐( ) 𝑥

1
𝑡

𝑐( ) 𝐸.

(A6), the statement leads to𝑥
2

𝑡
𝑐( ) = 𝐸

which in turn, allows solving for namely𝑡
𝑐

(A7)

���(���)�� = �, 

�� = �� (� ��⁄ ) (� − �)⁄

�����(����)�� + ��1 − ��(����)��� = �

��� = (� − �)�(����)�� + �

��� = (� − �) �
�

��
�

����

���
+ �.

��(�) = ����(����)� + ��1 − ��(����)��

����(����)�� + ��1 − ��(����)�� � = �, 

�� = �� (�� − � � − �⁄ )(�� + �)��
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Correspondingly, using Equation (A1) to express the condition , then solving for𝑥
1

𝑡
𝑐( ) = 𝐸 𝑥

10

yields

from which, after replacing as given by (A7), leads to𝑡𝑐

(A8)

5.4 Construction of the global trajectory for the case𝑥(𝑡) 𝑎 < 𝑏

Whenever and , initially the dynamics sets by as given by Equation𝑎 − 𝑏 < 0 𝑥
0
≤𝐸 𝑥(𝑡) 𝑥1 𝑡( )

(A2) namely

Then, is decreasing for all Therefore, for Consequently, the global𝑥
1

𝑡( ) 𝑡≥0. 𝑥 𝑡( ) ≤ 𝑥
0

< 𝐸 𝑡 ≥ 0.

trajectory maintains the shape for Besides,we have𝑥(𝑡) 𝑥1 𝑡( ) 𝑡≥0.

(A9)

Because of this, the population size vanishes according to an exponential law.𝑥(𝑡)

Assume now that and . Then, initially, will conform to as given by𝑎 < 𝑏 𝑥0 > 𝐸 𝑥 𝑡( ) 𝑥2 𝑡( )

Equation (A6), that is,

Since by assumption and we also have , it follows that,𝑎 < 𝑏 𝐸 > 0

(A10)

Since as it is stated by Equation (A1), we have , inequality (A10) along𝐾 = 𝑎𝐸 𝑝 + 1( ) 𝑎𝑝 + 𝑏( )−1

the statement, yield the ordering,𝑥
0

> 𝐸

(A11)

On the other hand, from Equation (A6), the derivative of becomes.𝑥
2

𝑡( )

(A12)

Since for , the sign of shall be fixed by the factor(𝑎𝑝 + 𝑏)𝑒−(𝑎𝑝+𝑏)𝑡 > 0 𝑡∈𝑅+ 𝑑𝑥
2
(𝑡)

𝑑𝑡 (𝐾 − 𝑥
0
).

Then, since inequality (A11) holds, we have ,which implies Hence, for𝑥
0

> 𝐾
𝑑𝑥

2
(𝑡)

𝑑𝑡 < 0. 𝑎 < 𝑏

and , we have established that becomes a decreasing function of time t. On the other𝑥
0

> 𝐸 𝑥 𝑡( )

hand, from Equation (A6), we also have that

(A13)

��� = � �
����

���
�

�
���

����

��� = ��� �(−(� − �)��), 

��(�) = �� ���(� − �) �.

lim�→� ��(�) = 0.

��(�) = ����(����)� + �(1 − ��(����)�)

��(� + 1) < (�� + �)�

� < � < ��

���(�) �� =⁄ (�� + �)(� − ��)��(����)�

lim�→� ��(�) = �.
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Therefore, the path bears a horizontal asymptote Note also that because , by𝑥2 𝑡( ) 𝐾. 𝑎 < 𝑏

inequality (A11), we also have Therefore, the limiting value of whenever will lie𝐾 < 𝐸. 𝑥2 𝑡( ) 𝑡→∞

below . Then, necessarily the trajectory keeps on decreasing until it reaches the value ,𝐸 𝑥2 𝑡( ) 𝐸

that is, there exists a time value as given by Equation (A7) such that and after𝑡 = 𝑡𝑐 𝑥2 𝑡𝑐( ) = 𝐸

that, the dynamics of will set by that according to Equation (A1) bears a form𝑥 𝑡( ) 𝑥1 𝑡( ),

Then, choosing

adds the continuity condition , as much as setting to decrease asymptotically𝑥1 𝑡
𝑐( ) = 𝐸 𝑥(𝑡)

towards zero (see Figure A1b).

We can summarise what we have explored so far by stating that maintenance of the condition

implies the disappearance of the population, regardless of its initial value (also𝑎 < 𝑏 𝑥0

regardless of whether this value is greater or equal or less than ).𝐸

Figure A1: Construction of the trajectory for Provided , then for , the𝑥(𝑡) 𝑎 < 𝑏. 𝑎 < 𝑏 𝑥0≤𝐸

population size vanishes following the exponential law given by Equation (A1) with𝑥(𝑡) 𝑥1 𝑡( )

(Panel a). For and , initially takes on an form given by Equation𝑥
10

= 𝑥
0

𝑎 < 𝑏 𝑥
0

> 𝐸 𝑥(𝑡) 𝑥2 𝑡( )

(A1), which decreases asymptotically to a value . When crossing the horizontal line ,𝐾 < 𝐸 𝑥 = 𝐸
at a time , the trajectory ceases to be given by that would take it to the limit value by𝑡𝑐 𝑥(𝑡) 𝑥2 𝑡( ) 𝐾

approaching infinity and begins following an shaped trajectory with .𝑡 𝑥1 𝑡( ) 𝑥
10

= 𝐸𝑒
− 𝑎−𝑏( )𝑡

𝑐( )

Therefore, will asymptotically progress to zero as approaches infinity.𝑥(𝑡) 𝑡

5.5 Construction of the trajectory for the case𝑥(𝑡) 𝑎 > 𝑏

Now suppose that inequality fulfils. Then, implies𝑎 > 𝑏 𝐸 > 0

Now, since Equation (A1) establishes, , inequality above implies the ordering
𝐾=𝑎𝐸(𝑝+1)

(𝑎𝑝+𝑏)

��(�) = ��� ���(� − �) �. 

��� = ����(−(� − �)��), 

��(� + 1) > (�� + �)�. 
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(A14)

Suppose that and . Under these conditions, as specified by inequality (A14), we𝑎 − 𝑏 > 0 𝑥
0
≤𝐸

also have the order. And, as given by Equation (A2), at the beginning of the process, the𝐾 > 𝐸
population size will be set by𝑥(𝑡)

Then, once it departs from , will increase exponentially. And, since , as we𝑥
0

𝑥
1

𝑡( ) 𝑥
0
≤𝐸

elaborated around Equation (A3) by continuity of the global trajectory , there will be a time𝑥(𝑡)
satisfying,𝑡 = 𝑡

𝑐

at which population size , as given by , will meet the threshold, that is, For𝑥 𝑡( ) 𝑥
1

𝑡( ) 𝐸 𝑥
1

𝑡
𝑐( ) = 𝐸.

, according to Equation (A1), population size will switch from the growth form to𝑡 > 𝑡
𝑐

𝑥(𝑡) 𝑥
1
(𝑡)

one. Again, Equation (A12) states that the sign of sets by the factor Then,𝑡ℎ𝑒𝑥
2
(𝑡)

𝑑𝑥
2
(𝑡)

𝑑𝑡 𝐾−𝑥
0( ).

will increase whenever , and as stated by Equation (A13), approaches as𝑥
2
(𝑡) 𝐸 < 𝑥

0
< 𝐾 𝑥

2
(𝑡) 𝐾

progresses to infinity (Figure A2a).𝑡

Assume that in addition to , the initial condition places such that Under𝑎 > 𝑏 𝑥
0

𝐸 < 𝑥
0

< 𝐾.

these circumstances, the process will be conducted for a certain initial period by the branch𝑥
2
(𝑡)

of the trajectory , as established by Equation (A6). Again, Equation (A12) states that the sign𝑥(𝑡)

of shall fix by the factor Then, will increase whenever , and as
𝑑𝑥

2
(𝑡)

𝑑𝑡 𝐾 − 𝑥
0( ). 𝑥

2
(𝑡) 𝐸 < 𝑥

0
< 𝐾

stated by Equation (A13), approaches as progresses to infinity (Figure A2a). Besides,𝑥
2
(𝑡) 𝐾 𝑡

whenever and , the population size will be described by , attaining a𝑎 > 𝑏 𝑥0 > 𝐾 > 𝐸 𝑥(𝑡) 𝑥2 𝑡( )

form given by Equation (6), that is,

Then, as we have elaborated above, the condition sets the branch of the global𝑥0 > 𝐾 𝑥2 𝑡( ) 𝑥(𝑡)

trajectory to be decreasing and asymptotically approaching as progresses to infinity (Figure𝐾 𝑡
A2b).

� > �

��(�) = ���(���)�. 

�� = �� (� ��⁄ ) (� − �)⁄ , 

��(�) = ����(����)� + ��1 − ��(����)��. L
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Figure A2: Construction of the trajectory for . Whenever and at the𝑥 𝑡( ) 𝑎 > 𝑏 𝑎 > 𝑏 𝑥
0
≤ 𝐸

beginning of the process, population size will be ruled by as given by Equation (9), and𝑥(𝑡) 𝑥
1
(𝑡)

consequently, it will increase. By continuity, will eventually reach the threshold, and the𝑥
1
(𝑡) 𝐸

dynamics will start to be modelled by the branch of the global trajectory , thereby𝑥
2
(𝑡) 𝑥(𝑡)

approaching the equilibrium level when progressesto infinity. The case and𝐾 𝑡 𝑎 > 𝑏 𝐸< 𝑥
0

< 𝐾

portraits similarly with behaving as the branch and asymptotically approaching𝑥(𝑡) 𝑥
2

𝑡( ) 𝐾

(Panel a). Besides, whenever and , the population size will be described𝑎 > 𝑏 𝑥
0

> 𝐾 > 𝐸 𝑥(𝑡)

by , so the condition will fix to be decreasing and asymptotically approaching𝑥
2

𝑡( ) 𝑥
0

> 𝐾 𝑥(𝑡) 𝐾

as progresses to infinity (Panel b).𝑡

Summarising, whenever , then either the, or placements of the𝑎 > 𝑏 0< 𝑥
0

< 𝐸 < 𝐾 𝐸 < 𝑥
0

< 𝐾

initial condition will drive the population size being monotonically increasing and𝑥
0

𝑥 𝑡( )

approaching . If instead , will be monotonically decreasing with as an asymptote.𝐾 𝑥0 > 𝐾 𝑥(𝑡) 𝐾

As a consequence of this, could stand as a specific equilibrium state of the system𝑥 𝑡( ) = 𝐾
determined by and , the internal development processes that set the intensities of the natality𝑎 𝑏
and mortality processes and , as well as, by the external factor .(𝑁(𝑡) 𝑀(𝑡)) 𝐸

5.6 Analysis of case 𝑎 = 𝑏

Let us now analyse the behaviour of for the case . Again comparing and , we may𝑥(𝑡) 𝑎 = 𝑏 𝑥
0

𝐸

first consider the order. As we already know, for this case, the behaviour of the trajectory𝑥0≤ 𝐸

is determined by the branch as given by Equation (A2), namely Then,𝑥(𝑡) 𝑥1 𝑡( ) 𝑥1 𝑡( ) = 𝑥0𝑒 𝑎−𝑏( )𝑡.

since by assumption , we have The trajectory remains stationary (Figure𝑎 = 𝑏 𝑥1 𝑡( ) = 𝑥0. 𝑥(𝑡)

A3a).

For and , the trajectory follows the rule at the start of the growing𝑎 = 𝑏 𝑥0 > 𝐸 𝑥(𝑡) 𝑥
2

𝑡( )

process. According to Equation (A6) for , becomes,𝑎 = 𝑏

(A15)

Then we have

��(�) = �����(���)� + �(1 − ���(���)�)
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(A16)

Equation (A15) yields

(A17)

Nevertheless, since we established the condition , then so the trajectory𝑥
0

> 𝐸
𝑑𝑥

2
𝑡( )

𝑑𝑡 < 0 𝑥(𝑡)

shall be decreasing and asymptotically approaching as progresses to infinity (Figure A3b).𝐸 𝑡

In short, the case entitles a heterogeneous behaviour because if the magnitude of the𝑎 = 𝑏
initial population satisfies , then population size remains steady. However, if the𝑥

0
< 𝐸 𝑥(𝑡)

initial population size lies above the threshold, i.e. , then decreases exponentially𝐸 𝑥
0

> 𝐸 𝑥(𝑡)

and asymptotically approaches the equilibrium level .𝐸

Figure A3: The shape of for For and , the trajectory remains𝑥(𝑡) 𝑎 = 𝑏. 𝑎 = 𝑏 𝑥
0
≤ 𝐸 𝑥(𝑡)

stationary (Panel a).If the initial population size lies above the threshold, i.e. , then𝐸 𝑥
0

> 𝐸 𝑥(𝑡)

decreases exponentially and asymptotically approaches .𝐸

Summarising, the case entitles a heterogeneous behaviour because if the magnitude of the𝑎 = 𝑏
initial population satisfies , then population size remains steady. However, if the𝑥

0
< 𝐸 𝑥(𝑡)

initial population size lies above the threshold, i.e. , then decreases and𝐸 𝑥
0

> 𝐸 𝑥(𝑡)

asymptotically approaches the threshold.𝐸
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