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Pattern and Parity in Mathematics
Dr. Firoz Firozzaman

ABSTRACT

I. INTRODUCTION AND DEFINITIONS

___________________________________________

In mathematics, parity is a term to express if a given integer is even or odd. The parity of a 

number depends only on its remainder after dividing the number by 2. Suppose, *, 0 x x , 

the set of all positive integers. It is known that if x is even than it is divisible by 2. Otherwise 

it is an odd integer. 

Suppose * *x Z is an even integer. If the quotient 
*

2

x
is again an even integer, it is doubly 

even or evenly even. Otherwise, it is known as singly even or oddly even.  

In this paper, we discuss how the simple concept of parity of numbers could be used to

improve students’ ability to understand a real-life problem in an efficient way and have

a better retention rate. In college, first-year students enrolled in Algebra, Precalculus, or

Calculus courses most likely have a lack of knowledge of operations in arithmetic in

connection with algebra, geometry, and trigonometry. A certain group of students quite

often face difficulty in recognizing mathematical patterns. One goal of this note is to

recognize a mathematical pattern, connect it with other related areas of mathematics

and science, and find a solution strategy as a general case based on the student’s

background knowledge. The overarching goal of this work is to identify the topics in

first-year mathematics courses from algebra to calculus, where the students find it

difficult because of a lack of understanding or lack of working knowledge and skills. The

aim is to determine whether the difficulty involves conceptual or procedural deficiency

and to develop resources that could be used to overcome the difficulties.

We discuss some of the mathematical concepts and procedures students find most

difficult and provide possible solution outlines. We argue that a possible understanding

of the number system and mathematical pattern recognition may provide a strong

foundation that enhances the ability, and confidence of a student for better

performance, and good retention. Teaching and learning with mathematical parity

prepare students for modeling real-life problems in STEM education.

Keywords: parity, even numbers, odd numbers, singly and doubly even numbers, prime
numbers, hinges, quartiles, deciles, and fractiles.

The mathematical form of the evenly even and the oddly even numbers:

*{4 | }eeS x x Z  is the set of evenly even integers and 

*{4 2 | }oeS x x Z   is the set of oddly even integers.
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On the other hand, the odd numbers are not divisible by 2. The odd numbers set is 

*{2 1| }  oS x x Z . It is very interesting to observe the unique behavior of odd numbers in 

many applications. 

II. POWERS OF IMAGINARY NUMBER i= − 1

To evaluate *,ni n and *m Z

 Powers of  i based on evenly even, oddly even, or odd integers. 

Evenly even 4 , een m n S  1ni 
Oddly even 4 2, oen m n S   1ni  

Odd

*4 3,  n m m Z ni i
*4 1,n m m Z   ni i 

The general rule: mod 4n r , where 0, 1,2, 3r . 

Table 1:

III. PYTHAGOREAN THEOREM

In a right-triangle, the square of hypotenuse is equal to the sum of the squares of the other sides

called the legs. This is known as the theorem of Pythagoras [1]. These three measurements are 

known as Pythagorean Triplets or Pythagorean Triples. 

For the positive real numbers, , , and a b c , which are the measures of three sides of a right 

triangle the Pythagorean Theorem is 2 2 2a b c  , c is the measure of the hypotenuse. 

We will discuss the known formulas in terms of evenly even, oddly even and odd numbers to 

determine the pattern.

Here we discuss some well-known results on Pythagorean triplets ( , , )a b c , 2 2 2 a b c , 
*, , a b c Z . 

Proposition 1: Suppose a is an odd number greater than 1, then 
2 1

2

a
b


 is evenly even of 

the form 2 ( 1)b m m  , *m Z ,  and 
2 1

2

a
c


 is odd, where 1c b  .

Proposition 2.  Suppose a is an evenly even number, then 
2

1
4

a
b   is odd of the form 

2 *4 1,b m m Z   ,  and 
2

1
4

a
c   is also odd, where 2c b  . 

Proposition 3.  Suppose a is an oddly even number greater than 2, then 
2

1
4

a
b   is even of 

the form *4 ( 1),b m m m Z   , and 
2

1
4

a
c   is also even, where 2c b  . 
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     The following results are Pythagorean Triples ( , , )a b c , a is an odd number, 

Proposition 1.

(3,4,5) (5,12,13) (7,24,25) (9,40,41)

(11,60,61) (13,84,85) (15,112,113) (17,144,145)

(19,180,181) (21,220,221) (23,264,265) (25,312,313)

(27,364,365) (29,420,421) (31,480,481) (33,544,545)

Table 2:

      The following results are Pythagorean Triples ( , , )a b c , 2a  is an even number, 

Proposition 2 and 3.

(2,0,2)

Does not form a triangle
(4,3,5) (6,8,10) (8,15,17)

(10,24,26) (12,35,37) (14,48,50) (16,63,65)

(18,80,82) (20,99,101) (22,120,122) (24,143,145)

(26,168,170) (28,195,197) (30,224,226) (32,255,257)

Table 3:

More Pythagorean Triples can be found by using the form 2 2 2( ) ( ) ( ) ,ka kb kc k R   , set of 

positive real numbers. 

 Pythagorean Triples are proportional with a scale factor of k , which forms the direct 

variations. 

1, (3,4,5)k  2, (6,8,10)k  3, (9,12,15)k  4, (12,16,20)k 

0.1, (0.3,0.4,0.5)k 0.2, (0.6,0.8,0.1)k 0.3, (0.9,1.2,1.5)k 0.4, (1.2,1.6,2)k

Another known approach: Two numbers can be selected and then find the third number of the 

Pythagorean Triples.

We will select two numbers p and q such that 2a pq , then 2 2b p q  and 2 2c p q  . 

The relation 2 2 2 2 2 2 2( ) (2 ) ( )p q pq p q    follows the Pythagorean Theorem. 

Table 4:
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 Pythagorean Triples when p q .

2 12, 1, 6pq q p   2 12, 2, 3pq q p   2 12, 0.5, 12pq q p   2 12, 1.5, 4pq q p  

(12,35,37) (12,5,13) (12,143.75,144.25) (12,13.75,18.25)

In the number theory, Fermat’s theorem on sums of two squares states that an odd prime  P

can be expressed as 2 2 P x y , with *, x y Z , set of positive integers, iff 1(mod 4)P , [3]. 

The known such prime numbers are 

2 2 2 2 2 2 2 2 2 2 2 25 1 2 13 2 3 17 1 4 29 2 5 37 1 6 41 4 5           

We propose a method to find the Pythagorean primes using the magic rule 8 4 12  . 

Magic rule 8 – 4 – 12: Choose a Pythagorean prime, then add 8, 4, or 12 in order to collect the 

next Pythagorean prime. In this process one needs to observe the output. If the output is not a 

prime, filter it or mark it and continue with the process. Given below is an elastration step by 

step. 

Table 5:

IV. PYTHAGOREAN PRIMES (FERMAT’S THEOREM ON SUMS OF TWO SQUARES)

                                                                                                                       12

  The first Pythagorean prime is 51 mod 4.                                                                                                             
                                                                                                              

    5 + 8 = 13     13 + 4 = 17           17 + 12 = 29                                                                                                          

   29 + 8 = 37       37 + 4 = 41           41 + 12 = 53                               8                     4     
   53 + 8 = 61       61 + 4 = 65           61 + 12 = 73

   73 + 8 = 81      73 + 4 = 77            73 + 12 = 85  , largest non-prime is 85 in this case.   

Box the non-primes, if repeated three times in a row, use the largest non-prime as follows.

85 + 8 = 93           85 + 4 = 89          85 + 12 = 97       

97 + 8 = 107         97 + 4 = 101       97 + 12 = 109      

109 + 8 = 117        109 + 4 = 113     109 + 12 = 121  

113 + 8 = 121        113 + 4 = 117     113 + 12 = 125   

125 + 8 = 133       125 + 4 = 129      125 + 12 = 137

137 + 8 = 145     137 + 4 = 141         137 + 12 = 149

149 + 8 = 157     157 + 4 = 161          157 + 12 = 169         

169 + 8 = 177    169 + 4 = 173         173 + 12 = 185

173 + 8 = 181     181 + 4 = 185        181 + 12 = 193

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

8  © 2023 London Journals PressVolume 23 | Issue 6 | Compilation 1.0

                      

Pattern and Parity in Mathematics



Continuing in this process one may easily find infinitely many Pythagorean primes.

We further check the following:

2 2 2 2 2 2 2 2 2 2 2 253 2 7 61 5 6 73 3 8 89 2 8 97 4 9 101 1 10           

2 2 2 2 2 2 2 2 2 2 2 2109 3 10 113 6 7 137 4 11 149 7 10 157 6 11 173 2 13           

It is interesting to note that each Pythagorean prime number is the sum of one even squares and 

one odd squares congruent to 1 mod 4 and this representation is unique.

Following list shows the prime positions of Pythagorean primes. The Pythagorean primes are 

in row 1, their prime positions are in row 2.

5 13 17 29 37 41 53 61 73 89 97 101 109 113 137 149 157 173

3 6 7 10 12 13 16 18 21 24 25 26 29 30 33 35 37 40

The parity among direct variations, Pythagorean triplets, and similar right triangles have 

applications in determining arc length of a certain types of functions.  

The identity 2 24 ( ) ( )ab a b a b    is a Pythagorean.

                                                                 

                                                                      a b            a b

                                                                          2 ab

Example 1. Find the arc length of the curve given by the function with the given restricted 

domain, 
4

2

1
( ) , 2 4

4 8

x
f x x

x
    .

3

3

1
'( )

4
f x x

x
  , then to evaluate the definite integral 

4

2

2

1 [ '( )]L f x dx  . 

It is expected that the readers know how to simplify the integrand.    

V. PYTHAGOREAN TRIPLES IN FINDING AN ARC LENGTH

It is not too difficult to check that 

2 2

3 3

3 3

1 1
1

4 4
x x

x x

   
      
   

, which is a Pythagorean.  

One has to verify that 2 1ab or 4 1ab . 
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Definition. Hinges are positions when we split an ordered data set into pieces. John Tukey’s 

upper hinge and lower hinge are the measures of positions, known as third and first quartiles. 

Let 0p  be a positive integer. Two integers N and r are congruent modulo p, if there is an 

integer 0, 0 1k r p    such that N r kp  , and commonly known by the notation

modN r p

Notice that the condition " N r kp  ” for some integer k" is equivalent to the condition "p 

divides N – r".

Suppose we have N discrete ordered data points and to find p segments keeping m data 

points in each segment. The number of hinges must be 1p . 

To determine how many hinges are integer ranked and how many are non-integer ranked.  

We observe that when 
N r

m
p p
  , the number of data points in each segment is 

N r
m

p




and there are r integer ranked hinges.

   

For simplicity we discuss a special case for four equal divisions commonly known as quartiles 

[4], and the same idea is extended for deciles [2] and further on even order of divisions or 

segments.

Suppose N is an even number, the middle most hinge will be non-integer ranked.  

VI. HINGES

Further if N is doubly even, the first and third hinge are non-integer ranked as well. The 

number of data points N is divisible by 4. This result is confirmed by the remainder rule 

*, 0; ,
4

N
m r m r Z   , there is no integer ranked hinges. 

If N is singly even, then the remainder is 2 when N is divided by 4. The middle most hinge 

will be non-integer ranked and the other two must be integer ranked. The first hinge therefore 

is ( 1)m th data point and the third one is ( )N r th data point, [4], [5].    

Corollary 1: If the divisor p is an even number, then there exist midhinge (median) and data 

set shows symmetry about midhinge. 

The midhinge 2H is considered as the median of the ordered data set [4].  If p is odd, 

midhinge does not exist for the ordered data set and there is no symmetry. 

Corollary 2: If the number of data points N is divisible p and , 0N mp r  , then there is no 

integer ranked hinge. The positions of the hinges would be between each consecutive groups of 

m observations.
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Note that if N is an odd number and 4p  , then the remainder is either 1 or 3.  On the other 

hand if N is an even number then remainder is either 0 or 2. 

Remainder 1r  confirms the middle most hinge (median) as integer ranked and other two 

non-integer ranked keeping m data points in each segment. 

Remainder 3r  or 1 3p   confirms all three hinges are integer ranked keeping m data 

points in each segment.  Let us define :md m-th observation in the ordered data set. 

 Thus we have the following table using average:

r
1H : first quartile 2H : median 3H : third quartile 

0
1( ) / 2m md d  /2 /2 1( ) / 2N Nd d 

( 1)( ) / 2N m N md d  

1
1( ) / 2m md d 

( 1)/2Nd  ( 1)( ) / 2N m N md d  

2
1md  /2 /2 1( ) / 2N Nd d  N md 

3
1md  ( 1)/2Nd  N md 

The remainder rule we propose works for hinges when the divisor p is an even number.  

But the remainder rule still works when p is an odd number. In this case, the number of hinges 

is even, which shows an interesting behavior. Finding integer ranked hinges we keep as an 

open question. 

For example, we have 22 ordered data points and to find 8 hinges for nine segments. 

We have 22, 9N p  , therefore 
22

4 mod 9
9
 , where 4, 2r m  .  It is not difficult to 

verify that there are 4 integer-ranked hinges and remaining 4 hinges are non-integer ranked. 

The number of data points in each segment is 2m  . 

Table 6:

Following are the possible selections.

Observation 1: Integer ranked to non-integer ranked respectively.

                                                                                                                                        

Observation 2: Non-integer ranked to integer ranked

Observation 3: With symmetry around the middle line.
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Suppose there are N elements in an ordered data set, we are interested to find 1f  fractiles. 

In this model f is an even number, [2], [4].

Let us consider modN r f , where 0, 1, 2, 1; 2, 3, 4, ,r f f N  

The number of observations in each segment is known by 
N r

m
f


 .  

The  -th fractile is calculated as follows 

1N d
F i

f f
 

 
   

 
, where i and d f are positive integers. 

The following model produces fractiles by the following rounding notion:

Condition 1. If 
2

f
r  , round F to the nearest integer when d r . 

Condition 2. If 
2

f
r  , round F to the nearest integer when 

2

f
d    or 

3
1 1

2
f r d f     .  

Condition 3. Otherwise take average of two consecutive terms in the groups with m data 

points in each.

Example 1. Suppose 64, 8N f  , 64 0 mod 8 ,  0r  . 

In this example all the fractiles are non-integer ranked, with 8 ordered data points in each 

segment.

       The average position of the fractiles based on 
1N

F
f

 




Hinge
1F 2F 3F 4F 5F 6F 7F

Position 8th - 9th 16th – 17th 24th – 25th 32nd – 33rd 40th – 41st 48th – 49th 56th – 57th

Table 7:

VII. GENERAL MODEL FOR FRACTILES

Example 2. Suppose 65, 8N f  , 65 1 mod 8 ,  1r  . 

In this example all the fractiles are non-integer ranked except the median 

4

65 1
4 33

8

th rdF


   , with 8 ordered data points in each segment.

The average position of the fractiles based on 
1N

F
f

 




Hinge
1F 2F 3F 4F 5F 6F 7F

Position 8th - 9th 16th – 17th 24th – 25th 33rd 40th – 41st 48th – 49th 56th – 57th

Table 8:
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Example 3. Suppose 66, 8N f  , 66 2 mod 8 ,  2r 

In this example we have two integer ranked hinges. There are 8 ordered data points in each 

segment.

One needs to identify integer ranked hinges using the proposed conditions.

  

 The average position of hinges based on 
1N

F
f

 




Hinge
1F 2F 3F 4F 5F 6F 7F

Position 8th - 9th 16th – 17th 25th 33rd – 34th 41th – 42nd 50th 56th – 57th

It is very easy to check that 3F and 6F are integer ranked.

The third position is 
3

1
25 25

8
F    and the sixth position is 

6

2
50 50

8
F   

In this paper, we proposed several methodologies to solve complex mathematical problems, 

portraying pattern recognition and parity which could make complex math problems easier. We 

proposed strategies to determine powers of imaginary roots, calculating Pythagorean t riplets 

and Pythagorean primes using our “Magic Rule 8-4-12”, and finding arc lengths and fractiles. 

Applying these methods could enhance students’ background knowledge and skills to face the 

challenges in STEM education. These methods would be further studied to determine if 

students are able to implement these tactics to solve mathematical problems more efficiently.

Table 9:

VIII. CONCLUSION
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