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I. INTRODUCTION

Let 𝑝𝑛 denote the 𝑛𝑡ℎ prime. We prove that 

max
𝑝𝑛+1≤𝑋

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑋
7

12+𝜀

max
𝑝𝑛+1≤𝑋

(𝑝𝑛+1 − 𝑝𝑛) ≪ 𝑋1/2 log 𝑋

for any sufficiently large 𝑋 and any sufficiently small 𝜀.

Let 𝑝𝑛 denote the 𝑛𝑡ℎ prime, and let

𝐺(𝑋) ≔ max
𝑝𝑛+1≤𝑋

(𝑝𝑛+1 − 𝑝𝑛)

denote the the maximum gap between consecutive primes less than 𝑋. It is clear from 

the prime number theorem that

𝐺(𝑋) > (1 + o(1))log 𝑋,

as the average gap between the prime numbers which are ≤ 𝑋 is ~ log 𝑋. In 1931, 

Westzynthius proved that infinitely often, the gap between consecutive prime numbers 

can be an arbitrarily large multiple of the average gap, that is, 𝐺(𝑋)/ log 𝑋 → ∞ as

𝑋 → ∞, improving upon prior result of Backlund and Brauer-Zeitz. Moreover, the 

strongest unconditional lower bound on 𝐺(𝑋) is due to Ford, Green, Konyagin, 

Maynard, and Tao, who have shown that

𝐺(𝑋) ≫
log 𝑋 log log 𝑋 log log log log 𝑋

log log log 𝑋
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for sufficiently large 𝑋, with log𝑘 𝑋 the 𝑘-fold iterated natural logarithm of 𝑋, whereas 

the strongest unconditional upper bound is

𝐺(𝑋) ≪ 𝑋0.525

a result due to Baker, Harman, and Pintz. Assuming the Riemann Hypothesis, Cramér 

showed that 

𝐺(𝑋) ≪ 𝑋1/2 log 𝑋

My main theorem is the following further quantitative improvement.

Theorem 1: (Large prime gaps). For any sufficiently large 𝑋 and any sufficiently 

small 𝜀, one has

𝐺(𝑋) ≪ 𝑋
7

12+𝜀

For any sufficiently large 𝑋 and any sufficiently small 𝜀, we have

𝑋
7

12+𝜀 ≥ 𝑝𝑛+1

7
12+𝜀 > 𝑝𝑛

7
12+𝜀 > (log 𝑝𝑛)2 − log 𝑝𝑛 > 𝐺(𝑋)  (1)

(1) is correct when (log 𝑝𝑛)2 − log 𝑝𝑛 > 𝐺(𝑋) with 𝑛 ≥ 5

and 𝑝𝑛

7

12+𝜀 > (log 𝑝𝑛)2 − log 𝑝𝑛 when sufficiently large 𝑝𝑛

Indeed, consider 𝑝𝑛 = 𝑥, consider the following limit

lim
𝑥→∞

𝑥
7

12+𝜀

(log 𝑥)2 − log 𝑥
= ∞

We try with 𝜀 = 0, (1) is correct when 𝑝𝑛 ≥ 246

Theorem 2: (Large prime gaps). For any sufficiently large 𝑋, one has

𝐺(𝑋) ≪ 𝑋1/2 log 𝑋

For any sufficiently large 𝑋, we have

𝑋1/2 log 𝑋 ≥ 𝑝𝑛+1

1
2 log 𝑝𝑛+1 > 𝑝𝑛

1
2 log 𝑝𝑛 > (log 𝑝𝑛)2 − log 𝑝𝑛 > 𝐺(𝑋)   (2)

(2) is correct when (log 𝑝𝑛)2 − log 𝑝𝑛 > 𝐺(𝑋) with 𝑛 ≥ 5
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