
 

465U

London Journal of Research in Science: Natural and Formal
 

465U

LJP Copyright ID: 925695
Print ISSN: 2631-8490
Online ISSN: 2631-8504
Print ISSN: 2631-8490
Online ISSN: 2631-8504

Scan to know paper details and
author's profile

 ABSTRACT

İ

Volume 24 | Issue 8 | Compilation 1.0  

Modelling of Large Fire Insurance Claims:
An Extreme Value Theory Approach

Nelson Christopher Dzupire, Dalitso Kachusa & Samuel Gyamerah

University of Malawi

This research paper aims to develop a mathematical model that employs Extreme Value Theory (EVT)

and Risk Measures to estimate and forecast significant fire insurance claims. The primary goal is to

provide insurance companies with a more accurate understanding of the potential risks associated

with substantial fire-related losses. The study incorporates a three-parameter Generalized Pareto

Distribution (GPD) within the EVT framework to assess insurer risk concerning catastrophic fire

events. The importance of evaluating fire-related financial losses for insurers is emphasized,

especially given the impact of infrequent yet impactful extreme events on overall loss trends. By

applying EVT techniques, including the GPD and Peaks Over Threshold (POT) method, to a historical

dataset of fire insurance claims, the study effectively models the tail behavior of large losses.

Parameters obtained from these models facilitate the calculation of probabilities for extreme loss

occurrences, thereby enhancing risk management and pricing strategies for insurance firms. The

results demonstrate the EVT approach’s effectiveness in accurately modeling and estimating the risk

associated with significant fire insurance claims. This research contributes to the insurance domain

by presenting an enhanced mathematical and statistical framework for modeling substantial fire

insurance claims. Such an approach enables insurers to better comprehend the potential financial

implications of rare fire incidents, leading to more informed risk evaluation and resource allocatio.

Keywords: extreme value theory (EVT), generalized pareto distribution (GPD), fire insurance claims,

risk management, 1 catastrophic events.

Classification: LCC Code: HG9970.3

Language: English

© 2024. Nelson Christopher Dzupire, Dalitso Kachusa & Samuel Gyamerah. This is a research/review paper, distributed under the terms of
the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting
all noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.





Modelling of Large Fire Insurance Claims:
An Extreme Value Theory Approach

Nelson Christopher Dzupireα *, Dalitso Kachusaσ & Samuel Gyamerahρ

____________________________________________

ABSTRACT

This research paper aims to develop a mathematical model that employs Extreme Value Theory

(EVT) and Risk Measures to estimate and forecast significant fire insurance claims. The primary goal

is to provide insurance companies with a more accurate understanding of the potential risks

associated with substantial fire-related losses. The study incorporates a three-parameter Generalized

Pareto Distribution (GPD) within the EVT framework to assess insurer risk concerning catastrophic

fire events. The importance of evaluating fire-related financial losses for insurers is emphasized,

especially given the impact of infrequent yet impactful extreme events on overall loss trends. By

applying EVT techniques, including the GPD and Peaks Over Threshold (POT) method, to a historical

dataset of fire insurance claims, the study effectively models the tail behavior of large losses.

Parameters obtained from these models facilitate the calculation of probabilities for extreme loss

occurrences, thereby enhancing risk management and pricing strategies for insurance firms. The

results demonstrate the EVT approach’s effectiveness in accurately modeling and estimating the risk

associated with significant fire insurance claims. This research contributes to the insurance domain

by presenting an enhanced mathematical and statistical framework for modeling substantial fire

insurance claims. Such an approach enables insurers to better comprehend the potential financial

implications of rare fire incidents, leading to more informed risk evaluation and resource allocation.

Keywords: extreme value theory (EVT), generalized pareto distribution (GPD), fire insurance claims,

risk management, 1 catastrophic events.
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I. INTRODUCTION

In the course of a lifetime, exceptional occurrences can emerge that are entirely unprecedented. These

occurrences are unexpected and are likely to repeat in the future. For instance, we can consider the

historical China floods of 1931 or the 2004 Indian Ocean disaster, along with the recurring catastrophic

floods in the lower Shire region of Malawi and the devastating effects of Cyclone Fredd in 2023 where

lives and properties where lost. Such events lead to significant infrastructural harm, including damage

to buildings, roads, bridges, and power lines. This brings about disruptions in essential services such as

transportation, communication, and utilities, coupled with the unfortunate loss of numerous lives.

These rare events do not only cause great damage and loss of lives but also their effects are widespread

throughout all sectors of the economy including the financial sector of which insurance companies are

of great concern [19]. Hence, modelling the behaviour and the distribution pattern of these extreme

and unusual events is of great importance in electing early warning systems and risk management

applications. Extreme events such as catastrophic floods, fires and disease outbreaks do not occur

frequently. However, their occurrence result in huge losses and since they rarely occur, many people do

not take time to insure against them. A couple of studies and insurance companies have over the years
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tried to compile and analyze data to enable them handle these catastrophic events [3, 16, 7, 18]. Yet,

they have challenges in putting necessary reserves and appropriate level of reinsurance which could

later on lead many insurers insolvent when catastrophic losses reoccur. Inadequate loss reserves often

stand out as a frequent cause of insolvency [5]. A number of researchers have modelled the impact of

surgency of insurance claims on the operation of insurance companies. For instance, the work of [2]

modelled catastrophe claims with left truncated severity distributions and modelled event frequency

with a non-homogeneous poissoin process and later used the model for forecasting. Similarly, [10]

studied claim severity of extreme fire insurance claims for tariffication using extreme value theory

(EVT) and generalised linear models (GLM). They then suggested that GLM do not work adequately for

extreme claims and revealed that peaks over threshold methodology from extreme value theory (EVT)

using a two-parameter generalised pareto distribution (GPD) as an accurate distribution for large

insurance claims. On modelling rare and catastrophic events and their impacts in finance and

insurance applications, many studies have achieved promising results by using different approaches.

For instance, in a study by [20], large motor insurance claims in Kenya was modelled using the extreme

value theory. Their study concentrated on the right tails of the underlying distribution (extremely large

observations) and they fitted a generalised pareto distribution (GPD) which is a family distribution in

EVT. Their empirical findings revealed that modelling extreme outcomes under EVT theory outweighs

other methods of estimation such as econometric methods, as EVT is known for its ability to model the

tail area of the distribution where extreme outcomes are located much better. Similar results were

obtained by [11] who tried to investigate the tail behaviour of the extreme outcomes in the US stock

market using EVT. The study concluded that, S&P 500 daily return data can also be characterized by

GPD. However, the commonality in these above studies is that they all used two parameter GPD in

modelling the extreme outcomes. Likewise, [13] modelled large flood insurance claims in Zimbabwe

using frequency and severity models, their study presented a framework for choosing the most suitable

probability distribution which they later fitted it to the past claims data and the parameters were

estimated using maximum likelihood method (MLE). According to their findings, Pareto and Negative

Binomial model provided the best fit to claims severity and frequency respectively. In the same pursuit,

[15] estimated the risks of extremely large fire insurance claims using a Markov Chain monte Carlo

approach. They proposed a Bayesian method using Markov Chain Monte Carlo techniques to calculate

probabilities of large fire losses and demonstrated its potential advantages for actuarial and risk

evaluations. Amongst emerging researchers, [14] modelled the frequency and severity of auto insurance

claims using statistical distributions. Their paper presented a methodical framework for choosing a

suitable probability model that best describes automobile claim frequency and loss severity as well as

their application in risk management. Their findings from empirical analysis indicated that claims

severity distribution is more accurately modeled by a skewed and heavy-tailed distribution. In a recent

investigation conducted by [8], an examination was carried out on the behavior of extreme returns

within the South African Industrial Index (J520) spanning the years 1995 to 2018. The study leveraged

the Generalized Extreme Value Distribution (GEVD) to assess and estimate extreme risk measures.

Their research outcomes revealed that across distinct quarterly return periods (8, 20, and 40 quarters),

the approximated values for extreme losses were 9.28%, 13.65%, and 17.03% respectively, whereas the

potential levels of extreme gains during these same periods were noted as 9.81%, 11.63%, and 12.68%.

Due to increasingly severe world catastrophes in the last two decades the property insurance industry

has paid out over $125 billion in losses [17]. In 2004, property insured losses resulting from natural

catastrophes and man made disasters, excluding the tragic tsunami of December 26, amounted to $42

billion, of which 95% was caused by natural disasters and 5% by man-made incidents such as fire.

These huge billion-dollar figures call for very accurate models of catastrophe losses. Even small

discrepancies in model parameters can result in underestimation of risk leading to billion-dollar losses

to either insurer or the reinsurer. Therefore, employing suitable mathematical and statistical models,

along with a thorough analysis of catastrophic data and precise estimation of claim frequency and
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severity distributions, holds the essential solution for accurately assessing costs and the probability of

financial distress for insurers [9]. Even though the methods used in existing literature are helpful,

there has been no studies on linking a three-parameter GPD under EVT and measures of risk such as

Value at Risk (VaR) and expected shortfall (ES) for estimating probabilities and magnitude of large

event outcomes in Malawian Insurance industry. Hence, the motivation behind this investigation lies

in the need to comprehend and analyze the patterns underlying the severity of fire-related losses

arising from significant insurance claims. The primary objective is to develop a robust model that

captures the intricate dynamics of such losses and further assesses the potential for encountering

exceedingly rare and severe fire-related losses. The pursuit of this research stems from its potential to

equip insurance firms with valuable insights. Specifically, this inquiry can empower insurance

companies to predict the potential magnitude of losses that might be incurred across a specific

customer base within a defined timeframe. These predictions hold substantial value in guiding the

processes of pricing and risk management for insurance firms operating in the non-life sector.

In this paper we present a modelling framework for insurance losses resulting from catastrophic fires

in the property insurance industry, which will aid in forecasting insurance risk and liabilities. By doing

this, we also seek to derive distribution model of fire loss under EVT, fit fire claims to the loss

distribution model for estimating probabilities and magnitude of large fire loss and then forecast

expected insurance loss due to risk of fire loss. The results of this study will provide academicians and

other researchers with a strong foundation in a wide range of mathematical and probabilistic methods

for risk modelling in general insurance, model-based pricing, risk sharing, ruin theory and credibility.

Insurance regulators around the world, like the Reserve Bank of Malawi through Insurance Act 2017,

requires that every commercial building be insured against collapse, fire, earthquake, storm and flood.

Henceforth, Modelling fire loss severity will help insurance companies to make a framework for new

product development and make data-driven projections of future fire losses. The rest of the study is

organized as follows: chapter two explains the Methodology adopted in the study. Chapter three gives

the Empirical Results and Discussions. Finally chapter four gives Conclusions and Recommendations

of the study.

II. MATERIALS AND METHODS

The research relied on fire loss data, encompassing claim amounts, extracted from Reserve Bank of

Malawi (RBM) and NICO General Insurance. NICO was chosen due to its prominence as the largest

General Insurer in Malawi based on market capitalization. The Reserve Bank of Malawi

(www.rbm.mw) served as the regulatory authority for the country’s insurance sector. Our focus

centered on fire insurance claim data, specifically examining claim amounts disbursed (referred to as

claim-size). The data collection period spanned from January 2005 to December 2021. The modeling

process centered on a 10-year dataset spanning 2011 to 2021. Data organization and analysis were

conducted using Microsoft Excel and the R programming package.

2.1 Model Specification

[20] used Extreme Value Theory(peaks over threshold modelling) for modelling large motor insurance

losses due to accident claims of Kenindia Insurance Company in Kenya. They fitted a two-parameter

GPD under EVT and revealed that it gives a more satisfactory fit to large motor insurance claims. The

purpose of this study is to model the risk of large losses in an insurance portfolio due fire damage in

commercial property. In light with this, the study adopted and refined the Extreme Values Model used

by [20]) by extending the model to a three-parameter GPD. The two-parameter GPD model used by

[20] is specified as the function Gξ,β(x) defined as follows:
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Gξ,β(x) =


1−

(
1 + ξx

β

)− 1
ξ

, if ξ ̸= 0

1− exp
(
− x

β

)
, if ξ = 0

(1)

where:

β > 0 is the scale parameter

x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −β

ξ

ξ is the shape parameter

X represents the motor claim amount.

In EVT we consider a random variable say X and fix a threshold u and focus on the positive part of X − u (since we

are focusing on the upper tail, where large outcomes are located). This distribution—that is, Fu(x) in EVT theory

is given by;

Fu(x) = Pr(X − u ≤ x)|X > u) =
Fx(X)− Fx(u)

1− Fx(u)
, for all X > u (2)

The key result in EVT is that as the threshold u → ∞ Fu(x) converges to GPD, Gξ,β(y);

Gξ,β(x) =


1−

(
1 + ξx

β

)− 1
ξ

, if ξ ̸= 0

1− exp
(
− x

β

)
, if ξ = 0

(3)

where β > 0 is the scale parameter; and x ≥ 0 when ξ ≥ 0 and 0 ≤ x ≤ −
β
ξ

In the present study the model was re-specified by using a three-parameter GPD under EVT framework and

incorporating risk measures such as value at Risk and Expected Shortfall for estimating risk of extreme fire loss in

an insurance portfolio. This will enhance the accurancy of the estimates as compared to 2 parameter GPD, with the

added location parameter. The three-parameter GPD in this study is specified as follows;

G(X;u, ξ, β) =


1− (1 + ξ(x−u)

β )− 1
ξ , ξ ̸= 0

1− exp(−x−u
β ), ξ = 0

(4)

where X = claim amount or fire loss random variable, u = location parameter β= scale parameter ξ = shape

parameter
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The generalized Pareto distribution (GPD) approach is based on the idea that EVT holds sufficiently far

out in the tails such that we can obtain the distribution not only of the maxima but also of other

extremely large observations [4].Nevertheless, this theorem fits our study since we are attempting to

analyze rare and large event outcomes, which in this case are catastrophic fires leading to huge

insurance loss. Extreme Value Theory (EVT) is concerned with the mathematical and statistical

analysis of extreme events hence a perfect fit to the present study.

2.2 Parameter Estimation and Derivation of Three-Parameter GPD

In this study the derivation of the parameters of GDP loss distribution will be done using the maximum

likelihood estimation (MLE). MLE is commonly applied for estimation in a variety of problems.

According to [1], MLE yields better estimates as compared to other methods like, least squares

technique and methods of moments. They argued further that MLE method fully utilizes all

information about parameters contained in the data.

Suppose random variables (fire claim amounts) X1, X2, ..., Xn form a random sample from a pdf f(x|θ).

We define the joint density function f(x1, x2, ..., xn|θ) as the likelihood function. The likelihood function

depends on the unkown parameter θ (or a vector of parameters), is always denoted as L(θ);

L(θ) = f(x1, x2, ..., xn|θ)

l(θ) = logL(θ) = log

n∏
i=1

f(xi|θ)

l(θ) =

n∑
i=1

logf(xi|θ) (5)

The goal of maximum likelihood estimation (MLE) is to find the values of the model parameters that maximizes

log likelihood function over the parameter space. Thus, estimating parameter θ with MLE principle gives;

θMLE = argmaxθ

n∑
i=1

logf(xi|θ) (6)

The density function for the three-parameter Generalized Pareto Distribution (GPD) is given by:

f(y;u, ξ, β) =

{
1
β

(
1 + ξ(x−u)

β

)− 1
ξ−1

, if ξ ̸= 0 (7)

Here, the tail index is denoted as α = 1
β , and the study focuses on the case where 0 < ξ ≤ 1.
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The transformation used is z
u = 1+ 1

β (x−u) or Z = ξu
β x+u

(
1− ξu

β

)
. This leads to the expression x = β

ξuz+u− β
ξ ,

with a Jacobian of ( β
ξu ) for ξ > 0. Consequently, the density of the transformed variable follows a Pareto distribution

with density f(z) = α
(

uα

zα+1

)
for z ≥ u and α > 0.

The Type I Pareto distribution is defined as f(x : α, λ) = α λα

(x+λ)α+1 for z ≥ u and x ≥ 0, where α is the shape

parameter and λ is the scale parameter.

The log-likelihood function for Maximum Likelihood Estimation (MLE) is given by:

L(α, λ) =
n∏

i=1

α
λα

(xi)α+1
(8)

Maximizing the log-likelihood function entails adjusting λ to λ = min{xi}, ensuring that λ is not larger than the

smallest value of x in the dataset.

The parameter estimate for α is determined by equating the derivative of the log-likelihood function to zero,
yielding:

1

α
+ log(λ)− 1

n

n∑
i=1

log(xi) = 0 (9)

This results in the expression:

α =
n∑n

i=1 log
(
xi

λ

) (10)

For a Generalized Pareto Distribution estimated from a Type I Pareto distribution, the Maximum Likelihood Estima-

tors (MLE) for ξ and u are:

ξ =
1

n

n∑
j=1

log
(zj
u

)

β = z(1)

Whare the mean and variance of GPD estimated from these parameters are:

Mean = u+ β
1−ξ for ξ < 1

Variance = β2

(1−ξ)2(1−2ξ)

2.3 Determination of Threshold (u)

Several methods have been proposed to determine the optimal threshold. The most common approach

is the eyeball method where we look for a region where the tail index seems to be stable. More formal

methods are based on minimizing the mean squared error (MSE) of the Hill estimator (i.e., finding the

optimal point), but such methods are not easy to implement [4]. Hence, a more easier and reflective

method to determine u, is the mean excess loss function e(u), defied as the average excess of the

random variable X over the threshold u [9]. Hence, this study will employ mean excess plot to

determine threshold. Here we shall plot the mean excess function (MEF) defined as;
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e(u) = E[X − u|X > u] (11)

e(u) =
1

nu

nu∑
i=1

(xi − u) (12)

where u is the threshold value, and nu denotes total number of values that which exceed the threshold

in the same line of thought, [6] argued that the mean excess function of the GPD is a linear function of

threshold u, they further claimed that the reasonable way to determine the threshold u, is to find values

over which the sample mean excess function is approximately linear.

2.4 Generalized Pareto Distribution (GPD) and Risk Measures Estimation
The distribution function of the three-parameter GPD is expressed as:

G(y;u, ξ, β) =


1−

(
1 + ξ(x−u)

β

)− 1
ξ

, if ξ ̸= 0

1− exp
(

−x−u
β

)
, if ξ = 0

(13)

Let V = X − u, which represents the excess loss over the threshold u. The probability that the random variable

X exceeds the threshold is given by 1 − F (u), and the probability that X > u + v given that X > u is 1 − Gu(V ).

Therefore, the unconditional probability that X > u+ v will be obtained by:

F (X > u+ v) = [1− F (u)].[1−Gu(V )]

According to Lee (2012), [1− F (u)] can be estimated by the empirical estimator
(
k
n

)
, where n is the total number

of observations and k is the number of observations exceeding the threshold value u. Hence, the probability

Pr(x > u+ v) will be given by:

nu

n
=

k

n

(
1 + ξ

(
x− u

β

))− 1
ξ

This can be further simplified to:

=
k

n

(
1 + ξ

(
x− u

β

))− 1
ξ

Such that the tail estimator for the distribution function will be given by:

F (x;u, β, ξ) = 1− k

n

(
1 + ξ

(
x− u

β

))− 1
ξ

(14)
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2.4.1 Value at Risk (VaR) of GPD

Value at Risk (VaR) is the 100th percentile of a

distribution (Klugman, 2013). It is defined as the

of an insurance portfolio due to the risk of fire loss

will be calculated as follows:

F (V aR) = p

p = 1− k

n

(
1 + ξ

(V aR− u)

β

)− 1
ξ

k

n

(
1 + ξ

(V aR− u)

β

)− 1
ξ

= 1− p

(
1 + ξ

(V aR− u)

β

)− 1
ξ

=
n

k
(1− p)

1 + ξ
(V aR− u)

β
=

(n
k
(1− p)

)−ξ

ξ
(V aR− u)

β
=

(n
k
(1− p)

)−ξ

− 1

Therefore,

V aR = u+
β

ξ

(n
k
(1− p)

)−ξ

− 1 (15)

2.4.2 Expected Shortfall (ES) on GPD

Expected Shortfall (ES), also known as Tail Value at Risk (TVaR), is an extension of VaR. It captures

the average loss given that the loss is greater than VaR (Klugman, 2013). At p% level, it may be defined

as the expected loss in the worst p% cases. For instance, ES(0.1) is the expectation of the worst 10 cases

out of 100 cases (Lee, 2012). Mathematically, the expected shortfall of an insurance portfolio due to the

risk of fire loss in this study will be calculated as follows:

ESp = E[loss given that loss > V aRp]

=

∫ 1

p
V aRu(X)du

1− p
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If X is continuous at V aRp(X), then:

ESp = E[X/X > V aRp(X)]

= πp +

∫∞
V aRp(X)

(X − πp)f(x)dx

1− p

For the GPD case, the expected shortfall will be estimated as follows:

ESp = V aRp +
β + ξ(V aRp − u)

1− ξ

=
V aRp(1− ξ) + β + ξ(V aRp − u)

1− ξ

=
V aRp − ξV aRp + β + ξV aRp − ξu

1− ξ

=
V aRp + β − ξu

1− ξ

Therefore,

ESp =
V aRp

1− ξ
+

β − ξu

1− ξ
(16)

2.4.3 Study Assumptions

The study assumptions encompass three key aspects: firstly, the continuous and independently

identically dis tributed nature of claim amounts (Xs, s > 0); secondly, the absence of claim handling

expenses in the data, focusing solely on paid fire losses; and thirdly, the adherence to extreme value

theory (EVT) principles, indicating that the data is not normally distributed. In accordance with this

theory, we therefore tested normality of data, and we found out that our data was indeed not normally

distributed hence consistent for modelling.

III. EMPIRICAL RESULTS AND DISCUSSIONS

This section presents and discusses the empirical findings of the analysis and modelling of large fire

insurance claims and estimation of risk measures based on three parameter GPD under extreme value

theory. For analysis of the modelling procedure the study used quantitative claim size data collected

from RBM and NICO ranging from 2011 to 2021. Some basic data cleaning was applied using Ms Excel

where claim records with missing values and duplicates were removed. The data obtained were

exported to R statistical package for further analysis.
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3.1 Exploratory Data Analysis

Descriptive analyses are important since they provide the foundation upon which correlation and

experimental studies emerge. They also provide clues regarding the issues that should be focused on to

help for further studies [12]. Therefore, the descriptive statistics of the data used in this study is

calculated to get a fair idea about the data before the analysis. Table 1 presents the Number of

Observations, Mean, Kurtosis, Skewness, Minimum and Maximum Values of claim amounts paid.

There are 846 observations of the variable claim amount. The average claim payment is MK2,168,100.

Minimum and Maximum observations are MK25,000 and MK59,113,780 respectively. The value of the

Skewness is greater than zero, this indicate the existence of fat tails/heavy tails in the data. There exist

large observations (outliers) in the right tail of the distribution curve which is consistent with the

underlying assumption of Extreme Value Theory (EVT). Likewise, Kurtosis is greater than 3, this

means data is not normally distributed hence we can proceed for analysis based on the assumptions of

the EVT. 13

Mean 2168.10

Standard error 117.95

Median 1060.46

Mode 2500.00

Standard

deviation

3430.77

Sample variance 11770205.4

9

Kurtosis 96.94

Skewness 7.31

Range 59088.78

Minimum 25.00

Maximum 59113.78

Count 846.00

Table 1: Descriptive Statistics

Besides noting that our data is not normally distributed from descriptive statistics, we further tested

for normality using a diagnostic test, Pearson chi-square test for normality at 5% significance level. We

therefore obtained a p-value less than the significance level leading to rejecting null hypothesis. The

test revealed that our data was indeed not normally distributed and inline with EVT assumption as

shown in Table 2 below.
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Table 2: Normality Test

Test Hypothesis Alternative Hypothesis Test Statistic P-Values

Pearson

Chi-square

Data is

Normal

Data not Normal 1623.9 2.2 × 10
−16

In Figure 1, we observe that fire loss data is skewed to the right and uneven variability of claim

observations as seen on x-axis,(that is, data being heteroskedastic). This gives the insurance company a

hard time to predict expected losses and returns as they are operating on extreme values of making a

profit or loss hence more risky in case of huge fire loss. We also observe that the distribution of claims

is positively skewed, suggesting that small fire losses occur quite frequently and very large losses occur

less frequently but they are catastrophic.

According to [4], a more useful visualization of data can be obtained using logarithmic scale for the

x-axis (or even both axes). This is performed by plotting the Empirical Complementary Cumulative

Distribution Function (ccdf), that is, the empirical probability of the claims exceeding any given

threshold, sometimes also referred to as the Survival function as shown in Figure 2. This (Figure 2)

shows the empirical distribution of claim settlements. The tails are nonlinear implying the Pareto

behaviou (power law) and extreme value theory can be confirmed. Extreme Value Models are known to

be heavy tailed. According to EVT theory, extreme observations in a given sample data follow the tail of

an EVT distribution called Generalized Pareto Distribution GPD. Hence, there is a possibility that our

data of large fire insurance claims follow the tail of a GPD as evidenced by the Pareto behaviour in the

data.

Figure 1:Histogram of Fire Losses

©2024 Great Britain Journals Press 1557
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3.2 The Mean Excess Function and the Determination of the Threshold

Now that we established that the data is fat-tailed and follows a power law, we turn to fitting a GPD

distribution to the threshold exceedances. However, before performing that we need to determine an

appropriate threshold (a starting point where we shall assume any claim beyond it as being

extreme/large). In the figure 3 below, we plotted Mean Excess Function to confirm convergence of

GPD to any given threshold. The resulting plot looks fairly linear across the whole spectrum of losses.

Nonetheless, a small kink just below MK5, 000,000 is observed indicating that smaller losses follow a

somewhat different law/distribution. A fairly linear region can be observed between 0 and

MK5,000,000; above MK5,000,000 the data becomes sparse. Therefore, a threshold of MK5,000,000

Figure 2: Complementary Cumulative Distribution Function

was considered as a reasonable choice that is consistent with Mean Excess Function under EVT.
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Figure 3:Mean Excess Function Plot against Thresholds

Since the empirical distribution was non-linear implying the Pareto behaviour, we were justified to fit a

Generalised Pareto Distribution (GPD) to the tails of fire loss data. The data was fitted to a GPD model

using Maximum Likelihood Estimate as shown in Figure 4. The parameter estimates are U = 2167, ξ =

0.1938 and β = 3612. 76 as shown in Table 3. The shape parameter ξ is greater than 0 implying heavy

tailed distribution followed by the data. The distribution for the excesses shows a smooth curve (see

Figure 4: Excess Distribution and Fitted GPD
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Table 3:Model Parameters Estimation

Model Location (U) Shape (ξ) Scale (β)

G(X: U, ξ, β) 2167 0.1938 3612.76

Therefore, the estimated three-parameter GPD model using MLE method becomes;

To measure the goodness of fit between the observed data and the theoretical distribution. The

quantile-quantile plot (QQ-plot) serves as a valuable tool for initially evaluating the suitability of a

parametric distribution’s fit. In the context of Financial and Insurance scenarios, where data sets often

exhibit fat-tailed behavior, the QQ-plot proves particularly useful [4]. A well-suited parametric

distribution should lead to a linear graph in the QQ-plot, as demonstrated in Figure 5. This

visualization verifies the excellent fit of the Generalized Pareto Distribution (GPD) to the data,

substantiating its efficacy for predictions. Furthermore, the QQ-plot aids in the identification of

outliers within the dataset.

Additionally, an Anderson-Darling (AD) test was performed to assess the goodness of fit as shown in

Table 4. The resulting p-value exceeded the 5% significance level, leading to the non-rejection of the

null hypothesis. This outcome supports the conclusion that the data indeed adheres to the GPD within

the context of Extreme Value Theory (EVT). The establishment of a good fit is pivotal; it empowers us

to infer that the insurer is equipped to manage substantial claims by leveraging risk estimates, thus

ensuring financial stability even in the face of significant challenges.

G(X;u, ξ, β) =


1−

(
1 + 0.1938(x−2167)

3612.76

)− 1
0.1938

, if ξ ̸= 0

1− exp
(

−(x−2167)
3612.76

)
, if ξ = 0

(17)
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Figure 5: Quantile-Quantile Plot (QQ-Plot) of Residuals

Table 4: Goodness of Fit Test

Test Hypothesis Alternative Hypothesis Test Statistic P-Values

A-D Data follow GPD Data does not follow GPD 4.02 0.659

3.3 Risk Measures

With the GPD model successfully fitted to fire loss data, we can now employ it to assess the risk

associated with higher quantiles, as well as insurers’ capital value at risk, and the expected losses

within a specified time frame. For instance, our estimated 99% Value at Risk stands at MK15,437,440

in the most unfavorable scenario, accompanied by a lower interval of MK13,156,630 and an upper

interval of MK19,201,590. This prediction encompasses the projected loss that the company should

anticipate in their claims handling for the upcoming fiscal year.

This holds notable significance within the realm of operational risk management, particularly in

adherence to regulatory requirements. Calculating extremely high quantiles (99%) aids in evaluating

potential losses and gauging the company’s solvency under exceedingly adverse conditions.

Consequently, such assessments help in determining the company’s resilience in the face of

catastrophic scenarios, allowing for early detection and necessary action. As depicted in Figure 6, the

Tail Loss alongside the Estimated 99% VaR exemplifies these insights effectively.
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Figure 6: Tail Loss with Estimated 99% Value at Risk (VaR)

Even though Value at Risk (VaR) offers an estimation of the highest potential loss at the designated

confidence level, i.e. 99%, it lacks insight into the scale of losses that could surpass the VaR threshold.

Expected Shortfall (ES) overcomes this drawback by assessing the average value of all losses

surpassing the VaR threshold. ES tell us about the average expected loss given that the loss amount is

greater than VaR with certain probability level. For example, ES(0.05) with confidence level of 95% is

defined as the expectation of the worst 5 cases out of 100 cases provided the loss is greater than

VaR(0.05). Using a confidence level of 95% the ES is MK12,762,850 revealing that there is 5%

probability that minimum loss would be equal to MK12,762,850 or greater or we are 95% confident

that the maximum loss would be equal MK12,762,850 or less if loss exceeds VaR calculation in our

next financial year.Table 5 below, reports the estimates of VaR and expected losses at different

confidence levels as estimated by a three-parameter GPD.
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Table 5: Value at Risk and Expected Loss Estimates (Interval Estimate (MK’000))

VaR Lower CI Estimate Upper CI

90% 4853.09 4970.04 5302.19

95% 7038.21 7645.84 8439.94

99% 13156.63 15437.44 19201.59

ES 90% 8469.46 9443.91 11202.59

95% 11065.51 12762.85 16145.44

99% 17923.64 22427.06 35467.68

The estimated 95% VaR is MK7,645,840 and the estimated 95% Expected shortfall is MK12,762,850.

This means that assuming that 95% VaR level of MK7,645,840 is exceeded then the expected loss is

MK12,762,850. The resulting graph displays both the 95% VaR (first vertical dashed line and its profile

likelihood curve) and 95% Expected shortfall.

Figure 7: Estimate of 95% Value at Risk and Expected Shortfall
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Figure 8: Estimates of 90%, 95%, and 99% Value at Risk and Expected Shortfalls

IV. CONCLUSION AND RECOMMENDATIONS

4.1 Conclusion

The study’s primary objective was to develop a mathematical model employing Extreme Value Theory

(EVT) and Risk Measures to estimate and predict significant fire insurance claims. This aimed to offer

insurance companies a more precise grasp of potential risks linked to substantial fire-related losses.

The study established a three parameter Generalized Pareto Distribution (GPD) within the framework

of EVT for estimating insurer risk due to catastrophic fire incidents. The significance of assessing

fire-related financial losses for insurers was highlighted, es pecially considering the infrequent but

influential extreme events that can distort overall loss patterns. By applying EVT techniques, including

the GPD and Peaks Over Threshold (POT) method, to a dataset of historical fire insur ance claims, the

study accurately modeled the tail behavior of large losses. Parameters derived from these models

enabled the calculation of probabilities for extreme loss events, thereby supporting enhanced risk
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management and pricing strategies for insurance companies. The findings showcased the efficacy of

the EVT approach in accurately modeling and estimating the risk associated with substantial fire

insurance claims. The research contributes to the insurance field by offering an improved

mathematical and statistical framework for modeling significant fire insurance claims. Through this

approach, insurers can better comprehend the potential financial consequences of rare fire incidents,

facilitating more informed risk assessment and resource allocation. In summary, this study’s

methodology and findings have significant implications for managing and mitigating the risks

associated with fire related losses in the insurance sector.

In terms of modeling significant fire insurance claims through the extreme value approach, our

recommendations encompass several key points. It is advisable for insurers to employ the

three-parameter Generalized Pareto Distri bution (GPD) within this approach, enabling a robust

assessment of risk associated with substantial fire insurance claims. Moreover, insurance companies

are encouraged to allocate capital for potential large losses, guided by the Value at Risk (VaR) and

Expected Shortfall metrics calculated from the three-parameter GPD under the Ex treme Value Theory

framework. Leveraging insights derived from this methodology, companies can then formulate

well-informed strategies for pricing and capital reserving that align with the distinct risk profile of fire

insurance policies. In addition, we recommend that, future research should include other methods for

estimating VaR of fire loss such as Historical method and compare results to Extreme VaR and also,

should extend univariate EVT models to multivariate EVT models that may capture a broad spectrum

of covariates of fire occurence influencing fire losses to commercial property.
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List of Abbreviations

The following table below lists abbreviations in the manuscript:

Abbreviation Meaning

EVT Extreme Value Theory

GPD Generalised Pareto Distributions

POT Peaks Over Threshold

GLM Generalised Linear Models

GEVD Generalised Extreme Value

Distribution

ES Expected Shortfalls

VaR Value at Risk

RBM Reserve Bank of Malawi

MLE Maximum Likelihood Estimation
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MSE Mean Square Error

MEF Mean Excess Function

ccdf Complementary Cumulative

distribution function

AD Anderson Darling test

Q-Q plot Quantile-Quantile plot
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