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I. INTRODUCTION

Let D be the open unit disk in the complex plane. Let B = {z ∈ Cn : |z| < 1} be
the unit ball of Cn, and S = ∂B its boundary. We will denote by dv the normalized
Lebesgue measure on B.

Recall that for α > −1 the weighted Lebesgue measure dvα is defined by

dvα(z) = cα(1− |z|2)αdv(z),

where

cα =
Γ(n+ 1 + α)

n!Γ(1 + α)

is a normalizing constant so that dvα is a probability measure on B.
Let H(B) denotes the space of holomorphic functions on B. Take 1 ≤ p < ∞.

Then f ∈ H(B) is said to be in the weighted Bergman space Ap
α(B) if

∥f∥p
Ap

α
=

∫
B
|f(z)|pdvα(z) <∞.

Let φ be an analytic self-mapping of B, then the composition operator on H(B)
is given by

Cφf = f ◦ φ.

Recently, there have been an increasing interest in studying composition operators
acting on different spaces of analytic functions, for example, see [2,3] for details
about composition operators on classical spaces of analytic functions.

Let D be the differentiation operator defined by

Df = f ′, f ∈ H(D).

Hibschweiler and Portnoy [3] defined the linear operators DCφ and CφD and in-
vestigated the boundedness and compactness of these operators between Bergman
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spaces using Carleson-type measure. S. Ohno [4] discussed boundedness and com-
pactness of CφD between Hardy spaces. Recall the multiplication operator M
defined by

M f = ψf, f ∈ H(D).

A. K. Sharma defined [5] products of these operators in the following six ways:

(M CφDf)(z) = (z)f ′(φ(z)),

(M DCφf)(z) = (z)(φ′(z))f ′(φ(z)),

(CφM Df)(z) = (φ(z))f ′(φ(z)),

(DM Cφf)(z) = ′(z)f(φ(z)) + (z)(φ′(z))f ′(φ(z)),

(CφDM f)(z) = ′(φ(z))f(φ(z)) + (φ(z))f ′(φ(z)),

(DCφM f)(z) = ′(φ(z))f(φ(z))φ′(z) + (φ(z))f ′(φ(z))φ′(z).

for z ∈ D and f ∈ H(D).

There are a lot of papers researching these products, see [6,7,8]. Since those
results focus on D, naturally, we consider similar questions on B. Of course, the
method we used is different from the case on D.

For f ∈H(B), we define the differentiation operator onH(B) by radial derivative.
Recall that for z ∈ B and f ∈ H(B),

Rf =

n∑
j=1

zj
∂f

∂zj
(z) = lim

r→0

f(z + rz)− f(z)

r
, r ∈ R.

One can see that for z ̸= φ−1(0),

|R(f ◦ φ)(z)| = |(Rf)(φ(z)) ·Rφ(z)|
|φ(z)|

.

Then we also have six ways of products of these operators on the unit ball:

(M CφR)f(z) = (z) · (Rf)(φ(z)),
(CφM Rf)(z) = (φ(z)) · (Rf)(φ(z)),

|(M RCφf)(z)| =
| (z) ·Rφ(z) · (Rf)(φ(z))|

|φ(z)|
,

(CφRM f)(z) = (Rψ)(φ(z)) · f(φ(z)) + (φ(z)) · (Rf)(φ(z)),
(RM Cφf)(z) = f(φ(z)) ·Rψ(z) +R(f(φ(z))),

(RCφM f)(z) = R( (φ(z))) · f(φ(z)) +R(f(φ(z))) · (φ(z))

for z ̸= φ−1(0).

In this paper, we characterize the boundedness and compactness ofM RCφ,M CφR
and RCφM on the weighted Bergman spaces on the unit ball.

2. M RCφ

For a, b ∈ B, we will denote β(a, b) the distance with the Bergman metric on B.
For r > 0, let the Bergman metric ball

D(a, r) = {z ∈ B : β(a, z) < r}.
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For a point ζ ∈ S and t > 0, the non-isotropic metric ball with center ζ and
radius t is

Qt(ζ) = {z ∈ B : |1− ⟨z, ζ⟩| < t}.

The following Lemma is Theorm 50 of [9].

Lemma 2.1 Suppose 0 < p ≤ q < ∞, α is real, and λ is a positive Borel
maesure on B. Then for any nonnegative integer m with α+mp > −1 the following
conditions are equivalent.

(a) There is a constant C > 0 such that

∫
B
|Rmf(w)|qdλ(w) ≤ C∥f∥q

Ap
α

for all f ∈ Ap
α(B).

(b) For each (or some) s > 0 there is a constant C > 0 such that∫
B

(1− |z|2)s

|1− ⟨z, w⟩|s+(n+1+α+mp)q/p
dλ(w) ≤ C

for all z ∈ B.

(c) There is a constant C > 0 such that

λ(Qt(ζ)) ≤ Ct(n+1+α+mp)q/p

for all t > 0 and ζ ∈ S.
(d) For each (or some) r > 0 there is a constant C > 0 such that

λ(D(a, r)) ≤ C(1− |a|2)(n+1+α+mp)q/p

for all a ∈ B.

Theorem 2.2. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψRφ

|φ| ∈ Aq
β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

( | (z) ·Rφ(z)|
|φ(z)|

)q
dvβ(z)

for all Borel sets E of B. Then the following are equivalent:
(1) M RCφ maps Ap

α(B) boundedly into Aq
β(B).

(2)

µ(D(a, r)) = O((1− |a|2)
q(n+1+α+p)

p as |a| → 1.

Proof. Suppose (1) holds. Since ψRφ
|φ| ∈Aq

β(B), by the definition of µ, we get (see

[10, p.163])
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∥M RCφ(f)∥qAq
β

=

∫
B

( | (z) · (Rf)(φ(z)) ·Rφ(z)|
|φ(z)|

)q
dvβ(z)

=

∫
B
|Rf(w)|qdµ(w)

= ∥Rf∥qLq(µ).

Since M RCφ maps Ap
α(B) boundedly into Aq

β(B),

∥Rf∥qLq(µ) = ∥M RCφ(f)∥qAq
β
≤ C∥f∥q

Ap
α

holds for all f ∈ Ap
α(B). From Lemma 2.1, one can see that

µ(D(a, r)) = O((1− |a|2)
q(n+1+α+p)

p as |a| → 1.

Conversely, if (2) holds, also by Lemma 2.1, we have

∥M RCφ(f)∥qAq
β
= ∥Rf∥qLq(µ) ≤ C∥f∥q

Ap
α
.

Then, M RCφ maps Ap
α(B) boundedly into Aq

β(B).

The following lemmas were obtained in [11] and [9] respectively.

Lemma 2.3. let r > 0, p > 0, α > −1, then there is a constant C such that

|f(z)|p ≤ C

(1− |z|2)n+1+α

∫
D(z,r)

|f(w)|pdvα(w)

for all f ∈ H(B) and all z ∈ B.

Lemma 2.4. Suppose p > 0, n + 1 + α > 0, then there exists a constant C > 0
(depending on p and α) such that

|f(z)| ≤
C∥f∥Ap

α

(1− |z|2)
n+1+α

p

for all f in Ap
α(B) and z ∈ B.

Theorem 2.5. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψRφ

|φ| ∈ Aq
β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

( | (z) ·Rφ(z)|
|φ(z)|

)q
dvβ(z)

for all Borel sets E of B. Then the following are equivalent:
(1) M RCφ maps Ap

α(B) compactly into Aq
β(B).

(2)

µ(D(a, r)) = o((1− |a|2)
q(n+1+α+p)

p as |a| → 1.
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Proof. First suppose thatM RCφ maps Ap
α(B) compactly into Aq

β(B). Let a ∈ B
and consider function

fa(z) =
(1− |a|2)

n
+1+

α
p

(1− ⟨z, a⟩)
2(n+1+α)

p

.

Clearly ∥fa∥Ap
α
∼= 1 and fa converges to zero uniformly on compact subsets of B

as |a| → 1. Since M RCφ is compact, so for gives ε > 0, we can find 0 < r0 < 1
such that ∥M RCφ(f)∥qAp

α
< ε for |a| > r0. Thus

ε >

∫
B
|Rfa(z)|qdµ(z) ≥

∫
D(a,r)

|Rfa(z)|qdµ(z)

for |a| > r0. Since 1− |a|2 ∼= |1− az| when z ∈ D(a, r), so

|Rfa(z)| =
2(n+ 1 + α)(1− |a|2)

n+1+α
p ⟨z, a⟩

p(1− az)
2(n+1+α)+p

p

∼=
2(n+ 1 + α)|a|2

p(1− |a|2)
n+1+α+p

p

.

Then

µ(D(a, r)) = o((1− |a|2)
q(n+1+α+p)

p

as |a| → 1.

Conversely, assume that (2) holds. Let {fk} be a sequence in Ap
α(B) such that

∥fk∥Ap
α
≤ M and {fk} → 0 uniformly on compact subsets of B. To show that

M RCφ maps Ap
α(B) compactly into Aq

β(B), it is sufficient to prove that

∥M RCφ(fk)∥qAq
β
= ∥Rfk∥qLq(µ) → 0 as k → ∞

From Lemma 2.3,

∫
B
|Rfk|qdµ ≤ C

∫
B

1

(1− |a|2)n+1+α

∫
D(a,r)

|Rfk(z)|qdvα(z)dµ(a).

Note that χD(a,r)(z) = χD(z,r)(a) and 1− |a|2 ∼= 1− |z|2 when a ∈ D(z, r). At the
same time, fk ∈ Ap

α(B) if and only if Rfk ∈ Ap
α+p(B), then by lemma 2.4,

|Rfk(z)| ≤
∥Rfk∥Ap

α+p

(1− |z|2)
n+1+α+p

p

≤
C∥fk∥Ap

α

(1− |z|2)
n+1+α+p

p

.

Then, by an application of Fubini,s theorem, we have

∥M RCφ(f)∥qAq
β

≤ C ′
∫
B
|Rfk(z)|q

µ(D(z, r))

(1− |z|2)n+1+α
dvα(z)

≤ C ′∥fk∥q−pAp
α

∫
B
|Rfk(z)|p

µ(D(z, r))

(1− |z|2)
q(n+1+α+p)−p2

p

dvα(z)

≤ C ′Mq−p
(∫

|z|≤r0
|Rfk(z)|p

µ(D(z, r))

(1− |z|2)
q(n+1+α+p)−p2

p

dvα(z)

+

∫
|z|>r0

|Rfk(z)|p
µ(D(z, r))

(1− |z|2)
q(n+1+α+p)−p2

p

dvα(z)
)

= I + II.
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Now (2) implies that for a give ε > 0, there is 0 < r0 < 1 such that

II = C ′Mq−p
∫
|z|>r0

|Rfk(z)|p
µ(D(z, r))

(1− |z|2)
q(n+1+α+p)−p2

p

dvα(z)

≤ εC ′Mq−p
∫
|z|>r0

|Rfk(z)|p(1− |z|2)pdvα(z)

≤ εC ′Mq−p∥fk∥pAp
α

≤ εC ′Mq.

Since fk → 0 uniformly on compact subsets of B,

I = C ′Mq−p
∫
|z|≤r0

|Rfk(z)|p
µ(D(z, r))

(1− |z|2)
q(n+1+α+p)−p2

p

dvα(z)

≤ εC1C
′Mq−p

∫
B
µ(D(z, r))dvα(z)

≤ εC1C2C
′Mq−p

∫
B
µ(B)dvα(z)

= εC1C2C3C
′Mq−p.

for k large enough. Thus

lim
n→∞

∥M RCφfk∥qAq
β
= 0,

and hece M RCφ maps Ap
α(B) compactly into Aq

β(B).

Lemma 2.6. [9, Theorem 54] Let 0 < p < q < ∞ and α be any real number,
and let λ be a positive Borel measure on B. Then for any nonnegative integer m
with α+mp > −1 the following conditions are equivalent.

(a) There is a constant C > 0 such that∫
B
|Rmf(w)|qdµ(w) ≤ C∥f∥q

Ap
α

for all f ∈ Ap

α

(B).

(b) For any bounded sequence {fj} in Ap
α(B) with fj(z) → 0 for every z ∈ B,

lim
j→∞

∫
B
|Rmfj(z)|qdλ(z) = 0.

(c) For any fixed r > 0, define the function

λ̂(z) =
µ(D(z, r))

(1− |z|2)n+1+α+mp
, z ∈ B,

then λ̂(z) ∈ L
p

p−q (vα+mp).

(d) For any fixed s > 0, define the function

B(λ)(z) =

∫
B

(1− |z|2)sdλ(w)
|1− ⟨z, w⟩|n+1+s+mp

, z ∈ B,

then B(λ)(z) ∈ L
p

p−q (vα+mp).
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(d) For any fixed s > 0, define the function

B(λ)(z) =

∫
B

(1− |z|2)sdλ(w)
|1− ⟨z, w⟩|n+1+s+mp

, z ∈ B,

then B(λ)(z) ∈ L
p

p−q (vα+mp).

Theorem 2.7. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψRφ

|φ| ∈ Aq
β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

( | (z) ·Rφ(z)|
|φ(z)|

)q
dvβ(z)

for all Borel sets E of B. Let G(z) = µ(D(z,r))
(1−|z|2)n+1+α+p . Then the following are

equivalent:

(1) M RCφ maps Ap
α(B) boundedly into Aq

β(B).
(2) M RCφ maps Ap

α(B) compactly into Aq
β(B).

(3) G ∈ L
p

p−q (vα+p).

Proof. (1)⇐⇒(3). Suppose (1) holds. By the computation before,

∥M RCφf∥qAq
β
= ∥Rf∥qLq(µ).

SinceM RCφ maps Ap
α(B) boundedly into Aq

β(B), we can find a positive constant
C such that

∥Rf∥qLq(µ) ≤ C∥f∥q
Ap

α
.

Then by Lemma 2.1 and Lemma 2.6,M RCφ maps Ap
α(B) boundedly into Aq

β(B)
if and only if G ∈ L

p
p−q (vα+p).

It is clear that (2) implies (1).

It remains to verify that (3) implies (2). Assume that

∥fk∥Ap
α
≤ C

and fk → 0 uniformly on compact subsets of B. It is sufficient to show that

lim
n→∞

∥M RCφfk∥qAq
β
= 0.

By the computation in the Theorem 2.5, we have

∥M RCφfk∥qAq
β

≤ C

∫
B
|Rfk(z)|q

µ(D(z, r))

(1− |z|2)n+1+α
dvα(z)

= C

∫
B
|Rfk(z)|qG(z)dvα+p(z).

©2024 Great Britain Journals Press Volume 24 | Issue 1 | Compilation 1.0 1531

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

 

Products of Multiplication, Composition and Differentiation on Weighted Bergman Spaces on the Unit Ball

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓



Let ε > 0. Then the hypothesis of (3) implies that there exists 0 < r0 < 1 such
that ∫

|z|>r0
(G(z))

p
p−q dvα+p(z) < ε

p
p−q .

It follows by Holder,s inequality that∫
|z|>r0

|Rfk(z)|qG(z)dvα+p(z)

≤
(∫

B
|Rfk(z)|pdvα+p(z)

) q
p
(∫

|z|>r0
(G(z))

p
p−q dvα+p(z)

) p−q
p

≤ ε∥Rfk∥qAp
α+p

≤ εC∥fk∥qAp
α

≤ Cε.

Since fk → 0 uniformly on compact subsets of B, by Cauchy,s estimate, |Rfk| < ε
for all |z| < r0 and for all n > n0. Thus

∫
|z|≤r0

|Rfk(z)|qG(z)dvα+p(z) ≤ εq
∫
|z|≤r0

G(z)dvα+p(z).

for all n > n0. Since
ψRφ
φ ∈ Aq

β(B) and thus

G(z) ≤ Cµ(D(z, r)) ≤ Cµ(B) <∞

thus ∫
|z|≤r0

G(z)dvα+p(z) ≤ C

∫
B
µ(D(z, r))dvα+p(z) ≤ C.

Then ∫
|z|≤r0

|Rfk(z)|qG(z)dvα+p(z) ≤ Cε

for n > n0. Hence, M RCφ maps Ap
α(B) compactly into Aq

β(B).

Theorem 3.1. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψφ ∈ Aq

β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

| (z)|qdvβ(z)

for all Borel sets E of B. Then the following are equivalent:

(1) M CφR maps Ap
α(B) boundedly into Aq

β(B).
(2)

µ(D(a, r)) = O((1− |a|2)
q(n+1+α+p)

p as |a| → 1.

3. M CφR

Similar to the proof in section 2, we have the following results about M CφR,
here we omit the details.
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Theorem 3.2. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψφ ∈ Aq

β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

| (z)|qdvβ(z)

for all Borel sets E of B. Then the following are equivalent:

(1) M CφR maps Ap
α(B) compactly into Aq

β(B).
(2)

µ(D(a, r)) = o((1− |a|2)
q(n+1+α+p)

p as |a| → 1.

Theorem 3.3. Let 0 < p ≤ q and α, β > −1. Let φ, ψ be a holomorphic maps on
B and ψφ ∈ Aq

β(B). Define a finite positive Borel measure µ on B by

µ(E) =

∫
φ−1(E)

| (z)|qdvβ(z)

for all Borel sets E of B. Let G(z) = µ
(D(

z,r
))

(1−|z|2)n+1+α+p . Then the following are

equivalent:

(1) M CφR maps Ap
α(B) boundedly into Aq

β(B).
(2) M CφR maps Ap

α(B) compactly into Aq
β(B).

(3) G ∈ L
p

p−q (vα+p).

4. RCφM

In this section, we characterize the boundedness and compactness of RCφM by
using Carleson measures.

Recall that a positive Borel measure µ on B is called Carleson measure for Ap
α(B)

if there exists a constant C > 0 such that∫
B
|f |pdµ ≤ C

∫
B
|f |pdvα

for all f ∈Ap
α(B).

Similarly, a positive Borel measure µ on B is called a vanishing Carleson measure
for Ap

α(B) if

lim
k→∞

∫
B
|fk|pdµ = 0

whenever {fk} is a bounded sequence in Ap
α(B) that converges to 0 uniformly on

compact subsets of B.

Theorem 4.1. Let 1 ≤ p < ∞, α > −1. Let φ be a holomorphic self-map of B
with Rφ

|φ| ∈ Ap
α(B) and ∈ Ap

α(B) such that Rψ ∈ Ap
α(B). Define a finite positive

Borel measure µφ,α on B by

µφ,α(E) =

∫
φ−1(E)

( |Rφ(z)|
|φ(z)|

)p
dvα(z)

©2024 Great Britain Journals Press Volume 24 | Issue 1 | Compilation 1.0 1533

L
on

d
on

 J
ou

rn
al

 o
f 

R
es

ea
rc

h
 in

 S
ci

en
ce

: N
at

u
ra

l a
n

d
 F

or
m

al

 

Products of Multiplication, Composition and Differentiation on Weighted Bergman Spaces on the Unit Ball

𝜓𝜓

𝜓𝜓

𝜓𝜓

𝜓𝜓



for all Borel sets E of B. Let dµ(w) = | (ω)|pdµφ,α(w). If for every (or some)
r > 0, there is a constant C > 0 such that

µ(D(a, r)) ≤ C(1− |a|2)n+1+α+p
(1)

holds for all a ∈ B, then RCφM is bounded on Ap
α(B) if and only if |Rψ|pdµφ,α

is a Carleson measure on Ap
α(B).

Proof. First suppose that |Rψ|pdµ is a Carleson measure on Ap
α(B). Then for

f ∈ Ap
α(B), by the definition of µφ,α, we get (see [10, p.163])

∥RCφM (f)∥p
Ap

α
=

∫
B

( |(Rψ)(φ(z)) ·Rφ(z) · f(φ(z))|+ | (φ(z)) · (Rf)(φ(z)) ·Rφ(z)|
|φ(z)|

)p
dvα(z)

=

∫
B
(| (w)Rf(w)|+ |f(w)Rψ(w)|)pdµφ,α(w)

≤
∫
B
| (w)|p|Rf(w)|pdµφ,α(w) +

∫
B
|f(w)|p|Rψ(w)|pdµφ,α(w).

Since |Rψ|pdµφ,α is Carleson measure on Ap
α(B), then∫

B
|f(w)|p|Rψ(w)|pdµφ,α(w) ≤ C∥f∥p

Ap
α
;

On the other hand, for r > 0, there exits a constant C > 0 such that

µ(D(a, r)) ≤ C(1− |a|2)n+1+α+p

holds for a ∈ B, then by Lemma 2.1,∫
B
| (w)|p|Rf(w)|pdµφ,α(w) =

∫
B
|Rf(w)|pdµ(w) ≤ C∥f∥p

Ap
α
,

thus

∥RCφM (f)∥p
Ap

α
≤ C∥f∥p

Ap
α
,

Therefore, RCφM is bounded on Ap
α(B).

For the converse, assume RCφM is bounded. Then there exists a constant
C > 0 such that

∥RCφM (f)∥p
Ap

α
≤ C∥f∥p

Ap
α

for all f ∈ Ap
α(B). Also, there exists a constant M > 0 such that f ∈ Ap

α(B),

∥RCφM (f)∥p
Ap

α
≥ M

∫
B
|R(ψf)(w)|pdµφ,α(w)

≥ M

∫
B
|f(w)|p|Rψ(w)|pdµφ,α(w)−M

∫
B
| (w)|p|Rf(w)|pdµφ,α(w)

≥ M

∫
B
|f(w)|pdν(w)−M

∫
B
|Rf(w)|p| (w)|pdµφ,α(w),
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where dν(w) = |Rψ|pdµφ,α. From (1) and lemma 2.1, there exists a constant C > 0
such that ∫

B
|Rf(w)|p| (w)|pdµφ,α(w) ≤ C∥f∥p

Ap
α
.

then exists a constant K > 0 such that∫
B
|f(w)|pdν(w) ≤ K∥f∥p

Ap
α
.

Thus, dν(w) = |Rψ|pdµφ,α is a Carleson measure on Ap
α(B).

The proof of the following lemma follows on similar lines as in [1, Proposition
3.11].

Lemma 4.2. Suppose 1 ≤ p, q < ∞. Let T = RCφM . Let φ be a holomorphic
mapping defined on B and ∈ H(B) be such that T : Ap

α(B)→Aq
α(B)(α > −1) is

bounded. Then T is compact if and only if whenever {fk} is a bounded sequence
in Ap

α(B)(α > −1) converging to zero uniformly on compact subsets of B, then
∥Tfk∥Aq

α
→ 0.

Theorem 4.3. Let 1 ≤ p < ∞, α > −1. Let φ be a holomorphic self-map of B
with Rφ

|φ| ∈ Ap
α(B) and ∈ Ap

α(B) such that Rψ ∈ Ap
α(B). Define a finite positive

Borel measure µφ,α on B by

µφ,α(E) =

∫
φ−1(E)

( |Rφ(z)|
|φ(z)|

)p
dvα(z)

for all Borel sets E of B. Let dµ(w) = | (ω)|pdµφ,α(w). If for every (or some)
r > 0, there is a constant C > 0 such that

lim
|a|→1−

µ(D(a, r))

(1− |a|2)n+1+α+p
= 0

holds for all a ∈ B then RCφM is compact on Ap
α(B) if and only if |Rψ|pdµφ,α

is a vanishing Carleson measure on Ap
α(B).

Proof. First suppose that RCφM is compact on Ap
α(B). Then by using the similar

argument as in Theorem 4.1, there exist a constant C > 0 such that for f ∈ Aq
α(B),

∥RCφM (f)∥p
Ap

α
≥ C

∫
B
|R(ψf)(w)|pdµφ,α(w).

then ∫
B
|f(w)|p|Rψ(w)|pdµφ,α(w)

≤ C∥RCφM (f)∥p
Ap

α
+ C

∫
B
| (w)|p|Rf(w)|pdµφ,α(w).

In the above inequality, take f = kz(w) ∈ Ap
α(B), where

kz(w) =
(1− |z|2)

n+1+α
p

(1− ⟨w, z⟩)
2(n+1+α)

p

,
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then ∫
B
|kz(w)|p|Rψ(w)|pdµφ,α(w)

≤ C∥RCφM (f)∥p
Ap

α
+ C

∫
B
| (w)|p|Rkz(w)|pdµφ,α(w)

= C∥RCφM (f)∥p
Ap

α
+ C

∫
B
|Rkz(w)|pdµ.

Since RCφM is compact on Ap
α and the unit vectors kz tends to 0 uniformly on

compact subsets of B as |z| → 0, by lemma 4.2, ∥RCφM (f)∥p
Ap

α
→ 0 as |z| → 0.

On the other hand, sice for every (or some) r > 0,

lim
|a|→1−

µ(D(a, r))

(1− |a|2)n+1+α+p
= 0,

by lemma 2.1, ∫
B
|Rkz(w)|pdµ ≤ ∥kz∥pAp

α
.

Then, we have

lim
|z|→1−

∫
B
|kz(w)|p|Rψ(w)|pdµφ,α(w) = 0.

thus, |Rψ|pdµφ,α is a vanishing Carleson measure on Ap
α(B).

Conversely, suppose that |Rψ|pdµφ,α is a vanishing Carleson measure on Ap
α(B).

Let {fk} be a norm bounded sequence in Ap
α(B) (α > −1) such that ∥fk∥Ap

α
≤ 1

and {fk} → 0 uniformly on compact subsets of B. Now we prove that RCφM is
compact onAp

α(B). By Lemma 4.2, it is enough to show that ∥RCφM (fk)∥Ap
α
→ 0

as k → ∞. Using the similar argument as before, we have

∥RCφM (fk)∥pAp
α
≤ C

∫
B
| (w)|p|Rfk(w)|pdµφ,α(w)+C

∫
B
|fk(w)|p|Rψ(w)|pdµφ,α(w).

Since |Rψ|pdµφ,α is a vanishing Carleson measure on Ap
α(B), then

lim
n→∞

∫
B
|fk(w)|p|Rψ(w)|pdµφ,α(w) = 0.

Using the similar argument as before, we have

lim
n→∞

∫
B
| (w)|p|Rfk(w)|pdµφ,α(w) = 0.

The proof is finished.
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